
Performance Optimization Guide
■ SAP BusinessObjects Data Services 4.1 Support Package 1 (14.1.1.0)

2012-11-22

© 2012 SAP AG. All rights reserved.SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP
BusinessObjects Explorer, StreamWork, SAP HANA and other SAP products and services mentioned

Copyright

herein as well as their respective logos are trademarks or registered trademarks of SAP AG in
Germany and other countries.Business Objects and the Business Objects logo, BusinessObjects,
Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other Business Objects products
and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of Business Objects Software Ltd. Business Objects is an SAP company.Sybase and
Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and other Sybase products and services
mentioned herein as well as their respective logos are trademarks or registered trademarks of Sybase,
Inc. Sybase is an SAP company. Crossgate, m@gic EDDY, B2B 360°, B2B 360° Services are
registered trademarks of Crossgate AG in Germany and other countries. Crossgate is an SAP
company. All other product and service names mentioned are the trademarks of their respective
companies. Data contained in this document serves informational purposes only. National product
specifications may vary.These materials are subject to change without notice. These materials are
provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and services
are those that are set forth in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an additional warranty.

2012-11-22

Contents

Welcome to SAP BusinessObjects Data Services..7Chapter 1

Welcome...71.1
Documentation set for SAP BusinessObjects Data Services...71.2
Accessing documentation..91.3
Accessing documentation on Windows..101.3.1
Accessing documentation on UNIX..101.3.2
Accessing documentation from the Web..101.3.3
SAP BusinessObjects information resources...101.4

Environment Test Strategy..13Chapter 2

The source OS and database server..132.1
Operating system...132.1.1
Database...142.1.2
The target OS and database server..142.2
Operating system...142.2.1
Database...142.2.2
The network...152.3
Job Server OS and job options..152.4
Operating system...152.4.1
Jobs...162.4.2

Measuring Performance..19Chapter 3

Data Services processes and threads..193.1
Processes ...193.1.1
Threads..203.1.2
Measuring performance of jobs..203.2
Checking system utilization..203.2.1
Analyzing log files for task duration..243.2.2
Reading the Monitor Log for execution statistics ...253.2.3
Reading the Performance Monitor for execution statistics..263.2.4
Reading Operational Dashboards for execution statistics...263.2.5

2012-11-223

Tuning Overview...29Chapter 4

Strategies to execute jobs...294.1
Maximizing push-down operations to the database server..294.1.1
Improving throughput...304.1.2
Using advanced tuning options...304.1.3

Maximizing Push-Down Operations..33Chapter 5

Push-down operations..335.1
Full push-down operations..335.1.1
Partial push-down operations...345.1.2
Operations that cannot be pushed down..345.1.3
Push-down examples...355.2
Collapsing transforms to push down operations example...355.2.1
Full push down from the source to the target example...365.2.2
Full push down for auto correct load to the target example ...365.2.3
Partial push down to the source example...375.2.4
Push-down of SQL join example ..375.2.5
To view SQL..385.3
Data_Transfer transform for push-down operations..395.4
Push down an operation after a blocking operation example...395.4.1
Using Data_Transfer tables to speed up auto correct loads example......................................415.4.2
Database link support for push-down operations across datastores.......................................425.5
Software support...425.5.1
Example of push-down with linked datastores..435.5.2
Generated SQL statements...455.5.3
Tuning performance at the data flow or Job Server level..455.5.4

Using Caches..47Chapter 6

Caching data..476.1
Caching sources..476.1.1
Caching joins...486.1.2
Changing cache type for a data flow ..496.1.3
Caching lookups..506.1.4
Caching table comparisons..516.1.5
Specifying a pageable cache directory...516.1.6
Using persistent cache...526.2
Using persistent cache tables as sources ...536.2.1
Monitoring and tuning caches...536.3
Using statistics for cache self-tuning ...536.3.1

2012-11-224

Contents

To monitor and tune in-memory and pageable caches..546.3.2

Using Parallel Execution...57Chapter 7

Parallel data flows and work flows..577.1
Parallel execution in data flows...587.2
Table partitioning..587.2.1
Degree of parallelism ..627.2.2
Combining table partitioning and a degree of parallelism..687.2.3
File multi-threading...707.2.4

Distributing Data Flow Execution..75Chapter 8

Splitting a data flow into sub data flows..758.1
Run as a separate process option ...758.1.1
Examples of multiple processes for a data flow..768.1.2
Data_Transfer transform..818.1.3
Examples of multiple processes with Data_Transfer...818.1.4
Using grid computing to distribute data flow execution...848.2
Server Group...848.2.1
Distribution levels for data flow execution..848.2.2

Bulk Loading and Reading..89Chapter 9

Bulk loading in DB2 Universal Database...899.1
When to use each DB2 bulk-loading method..899.1.1
Using the DB2 CLI load method...909.1.2
Using the DB2 bulk load utility...929.1.3
Using the import utility ..959.1.4
Bulk loading in HP Neoview..959.2
How Data Services and HP Neoview use the file options to load...969.2.1
Using the UPSERT bulk operation..979.2.2
Bulk loading in Informix...979.3
To set Informix server variables..979.3.1
Bulk loading in Microsoft SQL Server..989.4
To use the SQL Server ODBC bulk copy API...989.4.1
Network packet size option..989.4.2
Maximum rejects option...999.4.3
Bulk loading in Netezza..999.5
Netezza bulk-loading process...999.5.1
Options overview...1009.5.2
Configuring bulk loading for Netezza ...1009.5.3
Netezza log files...1019.5.4

2012-11-225

Contents

Bulk loading in Oracle...1029.6
Bulk-loading methods...1029.6.1
Bulk-loading modes..1029.6.2
Bulk-loading parallel-execution options...1039.6.3
Bulk-loading scenarios...1039.6.4
Using bulk-loading options...1049.6.5
Bulk loading in SAP HANA...1069.7
Bulk loading in Sybase ASE...1069.8
Bulk loading in Sybase IQ...1079.9
Configuring bulk loading for Sybase IQ...1079.9.1
Sybase IQ log files...1089.9.2
Bulk loading and reading in Teradata..1089.10
Bulk loader file options...1099.10.1
When to use each Teradata bulk-loading method...1109.10.2
Parallel Transporter method...1149.10.3
Teradata standalone utilities ..1179.10.4
Using the UPSERT bulk-loading operation..1259.10.5
Bulk loading using DataDirect's Wire Protocol SQL Server ODBC driver1269.11
Enabling the DataDirect bulk load feature in Windows..1269.11.1
Enabling the DataDirect bulk load feature in UNIX..1279.11.2

Other Tuning Techniques..129Chapter 10

Source-based performance options..12910.1
Join ordering..13010.1.1
Minimizing extracted data...13610.1.2
Using array fetch size...13610.1.3
Target-based performance options...13710.2
Loading method ..13810.2.1
Rows per commit...13910.2.2
Job design performance options..13910.3
Loading only changed data ..13910.3.1
Minimizing data type conversion...14010.3.2
Minimizing locale conversion..14010.3.3
Precision in operations ..14010.3.4

Index 141

2012-11-226

Contents

Welcome to SAP BusinessObjects Data Services

1.1 Welcome

SAP BusinessObjects Data Services delivers a single enterprise-class solution for data integration,
data quality, data profiling, and text data processing that allows you to integrate, transform, improve,
and deliver trusted data to critical business processes. It provides one development UI, metadata
repository, data connectivity layer, run-time environment, and management console—enabling IT
organizations to lower total cost of ownership and accelerate time to value. With SAP BusinessObjects
Data Services, IT organizations can maximize operational efficiency with a single solution to improve
data quality and gain access to heterogeneous sources and applications.

1.2 Documentation set for SAP BusinessObjects Data Services

You should become familiar with all the pieces of documentation that relate to your SAP BusinessObjects
Data Services product.

What this document providesDocument

Information about administrative tasks such as monitoring, lifecycle management,
security, and so on.Administrator's Guide

Information about customer issues fixed in this release.Customer Issues Fixed

Information about how to use SAP BusinessObjects Data Services Designer.Designer Guide

Information about available SAP BusinessObjects Data Services books, languages,
and locations.Documentation Map

Information about and procedures for installing SAP BusinessObjects Data Services
in a Windows environment.

Installation Guide for
Windows

Information about and procedures for installing SAP BusinessObjects Data Services
in a UNIX environment.

Installation Guide for
UNIX

Information for third-party developers to access SAP BusinessObjects Data Services
functionality using web services and APIs.Integrator's Guide

2012-11-227

Welcome to SAP BusinessObjects Data Services

What this document providesDocument

Information about the application, its components and scenarios for planning and
designing your system landscape. Information about SAP BusinessObjects Infor-
mation Steward is also provided in this guide.

Master Guide

Information about how to use SAP BusinessObjects Data Services Administrator
and SAP BusinessObjects Data Services Metadata Reports.

Management Console
Guide

Information about how to improve the performance of SAP BusinessObjects Data
Services.

Performance Optimiza-
tion Guide

Detailed reference material for SAP BusinessObjects Data Services Designer.Reference Guide

Important information you need before installing and deploying this version of SAP
BusinessObjects Data Services.Release Notes

A compiled “master” PDF of core SAP BusinessObjects Data Services books con-
taining a searchable master table of contents and index:
• Administrator's Guide
• Designer Guide
• Reference Guide
• Management Console Guide
• Performance Optimization Guide
• Supplement for J.D. Edwards
• Supplement for Oracle Applications
• Supplement for PeopleSoft
• Supplement for Salesforce.com
• Supplement for Siebel
• Supplement for SAP
• Workbench Guide

Technical Manuals

Information about building dictionaries and extraction rules to create your own ex-
traction patterns to use with Text Data Processing transforms.

Text Data Processing
Extraction Customiza-
tion Guide

Information about the linguistic analysis and extraction processing features that the
Text Data Processing component provides, as well as a reference section for each
language supported.

Text Data Processing
Language Reference
Guide

A step-by-step introduction to using SAP BusinessObjects Data Services.Tutorial

Release-specific product behavior changes from earlier versions of SAP Busines-
sObjects Data Services to the latest release. This manual also contains information
about how to migrate from SAP BusinessObjects Data Quality Management to SAP
BusinessObjects Data Services.

Upgrade Guide

Highlights of new key features in this SAP BusinessObjects Data Services release.
This document is not updated for support package or patch releases.What's New

2012-11-228

Welcome to SAP BusinessObjects Data Services

What this document providesDocument

Provides users with information about how to use the Workbench to migrate data
and database schema information between different database systems.Workbench Guide

In addition, you may need to refer to several Supplemental Guides.

What this document providesDocument

Information about interfaces between SAP BusinessObjects Data Services
and J.D. Edwards World and J.D. Edwards OneWorld.Supplement for J.D. Edwards

Information about the interface between SAP BusinessObjects Data Services
and Oracle Applications.

Supplement for Oracle Applica-
tions

Information about interfaces between SAP BusinessObjects Data Services
and PeopleSoft.Supplement for PeopleSoft

Information about how to install, configure, and use the SAP BusinessObjects
Data Services Salesforce.com Adapter Interface.Supplement for Salesforce.com

Information about interfaces between SAP BusinessObjects Data Services,
SAP Applications, SAP Master Data Services, and SAP NetWeaver BW.Supplement for SAP

Information about the interface between SAP BusinessObjects Data Services
and Siebel.Supplement for Siebel

We also include these manuals for information about SAP BusinessObjects Information platform services.

What this document providesDocument

Information for administrators who are responsible for
configuring, managing, and maintaining an Information
platform services installation.

Information Platform Services Administrator's Guide

Installation procedures for SAP BusinessObjects Infor-
mation platform services on a UNIX environment.

Information Platform Services Installation Guide for
UNIX

Installation procedures for SAP BusinessObjects Infor-
mation platform services on a Windows environment.

Information Platform Services Installation Guide for
Windows

1.3 Accessing documentation

2012-11-229

Welcome to SAP BusinessObjects Data Services

You can access the complete documentation set for SAP BusinessObjects Data Services in several
places.

1.3.1 Accessing documentation on Windows

After you install SAP BusinessObjects Data Services, you can access the documentation from the Start
menu.
1. Choose Start > Programs > SAP BusinessObjects Data Services 4.1 > Data Services

Documentation > All Guides.
2. Click the appropriate shortcut for the document that you want to view.

1.3.2 Accessing documentation on UNIX

After you install SAP BusinessObjects Data Services, you can access the documentation by going to
the directory where the printable PDF files were installed.
1. Go to <LINK_DIR>/doc/book/en/.
2. Using Adobe Reader, open the PDF file of the document that you want to view.

1.3.3 Accessing documentation from the Web

You can access the complete documentation set for SAP BusinessObjects Data Services from the SAP
BusinessObjects Business Users Support site.

To do this, go to http://help.sap.com/bods.

You can view the PDFs online or save them to your computer.

1.4 SAP BusinessObjects information resources

A global network of SAP BusinessObjects technology experts provides customer support, education,
and consulting to ensure maximum information management benefit to your business.

Useful addresses at a glance:

2012-11-2210

Welcome to SAP BusinessObjects Data Services

http://help.sap.com/bods

ContentAddress

Information about SAP Business User Support pro-
grams, as well as links to technical articles, down-
loads, and online forums. Consulting services can
provide you with information about how SAP Busines-
sObjects can help maximize your information manage-
ment investment. Education services can provide in-
formation about training options and modules. From
traditional classroom learning to targeted e-learning
seminars, SAP BusinessObjects can offer a training
package to suit your learning needs and preferred
learning style.

Customer Support, Consulting, and Education
services

http://service.sap.com/

SAP BusinessObjects product documentation.Product documentation

http://help.sap.com/bods/

Get information about supported platforms for SAP
BusinessObjects Data Services.

Use the search function to search for Data Services.
Click the link for the version of Data Services you are
searching for.

Supported Platforms (Product Availability Ma-
trix)

https://service.sap.com/PAM

2012-11-2211

Welcome to SAP BusinessObjects Data Services

http://service.sap.com/
http://help.sap.com/bods
https://service.sap.com/PAM

2012-11-2212

Welcome to SAP BusinessObjects Data Services

Environment Test Strategy

This section covers suggested methods of tuning source and target database applications, their operating
systems, and the network used by your SAP BusinessObjects Data Services environment. It also
introduces key job execution options.

This section contains the following topics:
• The source OS and database server

• The target OS and database server

• The network

• Job Server OS and job options

To test and tune jobs, work with all four of these components in the order shown above.

In addition to the information in this section, you can use your UNIX or Windows operating system and
database server documentation for specific techniques, commands, and utilities that can help you
measure and tune the SAP BusinessObjects Data Services environment.

2.1 The source OS and database server

Tune the source operating system and database to quickly read data from disks.

2.1.1 Operating system

Make the input and output (I/O) operations as fast as possible. The read-ahead protocol, offered by
most operating systems, can greatly improve performance. This protocol allows you to set the size of
each I/O operation. Usually its default value is 4 to 8 kilobytes which is too small. Set it to at least 64K
on most platforms.

2012-11-2213

Environment Test Strategy

2.1.2 Database

Tune your database on the source side to perform SELECTs as quickly as possible.

In the database layer, you can improve the performance of SELECTs in several ways, such as the
following:
• Create indexes on appropriate columns, based on your data flows.

• Increase the size of each I/O from the database server to match the OS read-ahead I/O size.

• Increase the size of the shared buffer to allow more data to be cached in the database server.

• Cache tables that are small enough to fit in the shared buffer. For example, if jobs access the same
piece of data on a database server, then cache that data. Caching data on database servers will
reduce the number of I/O operations and speed up access to database tables.

See your database server documentation for more information about techniques, commands, and
utilities that can help you measure and tune the the source databases in your jobs.

2.2 The target OS and database server

Tune the target operating system and database to quickly write data to disks.

2.2.1 Operating system

Make the input and output operations as fast as possible. For example, the asynchronous I/O, offered
by most operating systems, can greatly improve performance. Turn on the asynchronous I/O.

2.2.2 Database

Tune your database on the target side to perform INSERTs and UPDATES as quickly as possible.

In the database layer, there are several ways to improve the performance of these operations.

Here are some examples from Oracle:

2012-11-2214

Environment Test Strategy

• Turn off archive logging

• Turn off redo logging for all tables

• Tune rollback segments for better performance

• Place redo log files and data files on a raw device if possible

• Increase the size of the shared buffer

See your database server documentation for more information about techniques, commands, and
utilities that can help you measure and tune the the target databases in your jobs.

2.3 The network

When reading and writing data involves going through your network, its ability to efficiently move large
amounts of data with minimal overhead is very important. Do not underestimate the importance of
network tuning (even if you have a very fast network with lots of bandwidth).

Set network buffers to reduce the number of round trips to the database servers across the network.
For example, adjust the size of the network buffer in the database client so that each client request
completely fills a small number of network packets.

2.4 Job Server OS and job options

Tune the Job Server operating system and set job execution options to improve performance and take
advantage of self-tuning features of SAP BusinessObjects Data Services.

2.4.1 Operating system

SAP BusinessObjects Data Services jobs are multi-threaded applications. Typically a single data flow
in a job initiates one al_engine process that in turn initiates at least 4 threads.

For maximum performance benefits:
• Consider a design that will run one al_engine process per CPU at a time.

• Tune the Job Server OS so that threads spread to all available CPUs.

For more information, see Checking system utilization.

2012-11-2215

Environment Test Strategy

2.4.2 Jobs

You can tune job execution options after:
• Tuning the database and operating system on the source and the target computers
• Adjusting the size of the network buffer
• Your data flow design seems optimal

You can tune the following execution options to improve the performance of your jobs:
• Monitor sample rate
• Collect statistics for optimization and Use collected statistics

2.4.2.1 Setting Monitor sample rate

During job execution, the SAP BusinessObjects Data Services writes information to the monitor log file
and updates job events after the number of seconds specified in Monitor sample rate has elapsed.
The default value is 30. Increase Monitor sample rate to reduce the number of calls to the operating
system to write to the log file.

When setting Monitor sample rate, you must evaluate performance improvements gained by making
fewer calls to the operating system against your ability to view more detailed statistics during job
execution. With a higher Monitor sample rate, the software collects more data before calling the
operating system to open the file, and performance improves. However, with a higher monitor rate,
more time passes before you can view statistics during job execution.

Note:
If you use a virus scanner on your files, exclude the SAP BusinessObjects Data Services log from the
virus scan. Otherwise, the virus scan analyzes the log repeatedly during the job execution, which causes
a performance degradation.

2.4.2.2 Collecting statistics for self-tuning

SAP BusinessObjects Data Services provides a self-tuning feature to determine the optimal cache type
(in-memory or pageable) to use for a data flow.

2012-11-2216

Environment Test Strategy

2.4.2.3 To take advantage of this self-tuning feature

1. When you first execute a job, select the optionCollect statistics for optimization to collect statistics
which include number of rows and width of each row. Ensure that you collect statistics with data
volumes that represent your production environment. This option is not selected by default.

2. The next time you execute the job, this option is selected by default.
3. When changes occur in data volumes, re-run your job with Collect statistics for optimization to

ensure that the software has the most current statistics to optimize cache types.

Related Topics
• Using Caches

2012-11-2217

Environment Test Strategy

2012-11-2218

Environment Test Strategy

Measuring Performance

This section contains the following topics:
• Data Services processes and threads

• Measuring performance of jobs

3.1 Data Services processes and threads

Data Services uses processes and threads to execute jobs that extract data from sources, transform
the data, and load data into a data warehouse. The number of concurrently executing processes and
threads affects the performance of Data Services jobs.

3.1.1 Processes

The processes used to run jobs are:
• al_jobserver

The al_jobserver initiates one process for each Job Server configured on a computer. This process
does not use much CPU power because it is only responsible for launching each job and monitoring
the job's execution.

• al_engine

For batch jobs, an al_engine process runs when a job starts and for each of its data flows. Real-time
jobs run as a single process.

The number of processes a batch job initiates also depends upon the number of:
• parallel work flows

• parallel data flows

• sub data flows

For an example of the monitor log that displays the processes, see Analyzing log files for task duration.

2012-11-2219

Measuring Performance

3.1.2 Threads

A data flow typically initiates one al_engine process, which creates one thread per data flow object.
A data flow object can be a source, transform, or target. For example, two sources, a query, and a
target could initiate four threads.

If you are using parallel objects in data flows, the thread count will increase to approximately one thread
for each source or target table partition. If you set the Degree of parallelism (DOP) option for your
data flow to a value greater than one, the thread count per transform will increase. For example, a DOP
of 5 allows five concurrent threads for a Query transform. To run objects within data flows in parallel,
use the following features:
• Table partitioning

• File multithreading

• Degree of parallelism for data flows

Related Topics
• Using Parallel Execution

3.2 Measuring performance of jobs

You can use several techniques to measure performance of SAP BusinessObjects Data Services jobs:
• Checking system utilization

• Analyzing log files for task duration

• Reading the Monitor Log for execution statistics

• Reading the Performance Monitor for execution statistics

• Reading Operational Dashboards for execution statistics

3.2.1 Checking system utilization

The number of processes and threads concurrently executing affects the utilization of system resources
(see Data Services processes and threads).

2012-11-2220

Measuring Performance

Check the utilization of the following system resources:
• CPU

• Memory

• Disk

• Network

To monitor these system resources, use the following tools:

For UNIX:
• top or a third party utility (such as glance for HPUX)

For Windows:
• Performance tab on the Task Manager

Depending on the performance of your jobs and the utilization of system resources, you might want to
adjust the number of processes and threads. The following sections describe different situations and
suggests features to adjust the number of processes and threads for each situation.

3.2.1.1 CPU utilization

SAP BusinessObjects Data Services is designed to maximize the use of CPUs and memory available
to run the job.

The total number of concurrent threads a job can run depends upon job design and environment. Test
your job while watching multi-threaded processes to see how much CPU and memory the job requires.
Make needed adjustments to your job design and environment and test again to confirm improvements.

For example, if you run a job and see that the CPU utilization is very high, you might decrease the DOP
value or run less parallel jobs or data flows. Otherwise, CPU thrashing might occur.

For another example, if you run a job and see that only half a CPU is being used, or if you run eight
jobs on an eight-way computer and CPU usage is only 50%, you can be interpret this CPU utilization
in several ways:
• One interpretation might be that the software is able to push most of the processing down to source

and/or target databases.

• Another interpretation might be that there are bottlenecks in the database server or the network
connection. Bottlenecks on database servers do not allow readers or loaders in jobs to use Job
Server CPUs efficiently.

To determine bottlenecks, examine:
• Disk service time on database server computers

2012-11-2221

Measuring Performance

Disk service time typically should be below 15 milliseconds. Consult your server documentation
for methods of improving performance. For example, having a fast disk controller, moving database
server log files to a raw device, and increasing log size could improve disk service time.

• Number of threads per process allowed on each database server operating system. For example:
• On HPUX, the number of kernel threads per process is configurable. The CPU to thread ratio

defaults to one-to-one. It is recommended that you set the number of kernel threads per CPU
to between 512 and 1024.

• On Solaris and AIX, the number of threads per process is not configurable. The number of
threads per process depends on system resources. If a process terminates with a message
like "Cannot create threads," you should consider tuning the job.

For example, use the Run as a separate process option to split a data flow or use the Da
ta_Transfer transform to create two sub data flows to execute sequentially. Since each sub
data flow is executed by a different al_engine process, the number of threads needed for each
will be 50% less than in your previous job design.

If you are using the Degree of parallelism option in your data flow, reduce the number for
this option in the data flow Properties window.

• Network connection speed

Determine the rate that your data is being transferred across your network.
• If the network is a bottle neck, you might change your job execution distribution level from

sub data flow to data flow or job to execute the entire data flow on the local Job Server.

• If the capacity of your network is much larger, you might retrieve multiple rows from source
databases using fewer requests.

• Yet another interpretation might be that the system is under-utilized. In this case, you might increase
the value for the Degree of parallelism option and increase the number of parallel jobs and data
flows.

Related Topics
• Using Parallel Execution
• Using grid computing to distribute data flow execution
• Using array fetch size

3.2.1.2 Memory

For memory utilization, you might have one of the following different cases:
• Low amount of physical memory.

In this case, you might take one of the following actions:

2012-11-2222

Measuring Performance

• Add more memory to the Job Server.

• Redesign your data flow to run memory-consuming operations in separate sub data flows that
each use a smaller amount of memory, and distribute the sub data flows over different Job Servers
to access memory on multiple machines. For more information, see Splitting a data flow into sub
data flows.

• Redesign your data flow to push down memory-consuming operations to the database. For more
information, see Push-down operations.

For example, if your data flow reads data from a table, joins it to a file, and then groups it to calculate
an average, the group by operation might be occurring in memory. If you stage the data after the
join and before the group by into a database on a different computer, then when a sub data flow
reads the staged data and continues with the group processing, it can utilize memory from the
database server on a different computer. This situation optimizes your system as a whole.

For information about how to stage your data, see Data_Transfer transform. For more information
about distributing sub data flows to different computers, see Using grid computing to distribute data
flow execution.

• Large amount of memory but it is under-utilized.

In this case, you might cache more data. Caching data can improve the performance of data
transformations because it reduces the number of times the system must access the database.

There are two types of caches available: in-memory and pageable. For more information, see Caching
data.

• Paging occurs.

Pageable cache is the default cache type for data flows. On Windows, UNIX, and Linux, the virtual
memory available to the al_engine process is 3.5 gigabytes (500 megabytes of virtual memory is
reserved for other engine operations, totaling 4GB). You can change this default limit by increasing
the value of the MAX_64BIT_PROCESS_VM_IN_MB parameter in the DSConfig.txt file.

If more memory is needed than these virtual memory limits, the software starts paging to continue
executing the data flow.

If your job or data flow requires more memory than these limits, you can take advantage of one of
the following features to avoid paging:
• Split the data flow into sub data flows that can each use the amount of memory set by the virtual

memory limits.

Each data flow or each memory-intensive operation within a data flow can run as a separate
process that uses separate memory from each other to improve performance and throughput.
For more information, see Splitting a data flow into sub data flows.

• Push-down memory-intensive operations to the database server so that less memory is used on
the Job Server computer. For more information, see Push-down operations.

2012-11-2223

Measuring Performance

3.2.2 Analyzing log files for task duration

The trace log shows the progress of an execution through each component (object) of a job. The
following sample Trace log shows a separate Process ID (Pid) for the Job, data flow, and each of the
two sub data flows.

This sample log contains messages about sub data flows, caches, and statistics.

Related Topics
• Splitting a data flow into sub data flows
• Caching data
• Reference Guide: Objects, Log

2012-11-2224

Measuring Performance

3.2.3 Reading the Monitor Log for execution statistics

The Monitor log file indicates how many rows SAP BusinessObjects Data Services produces or loads
for a job. By viewing this log during job execution, you can observe the progress of row-counts to
determine the location of bottlenecks. You can use the Monitor log to answer questions such as the
following:
• What transform is running at any moment?
• How many rows have been processed so far?

The frequency that the Monitor log refreshes the statistics is based on Monitor sample rate.

• How long does it take to build the cache for a lookup or comparison table? How long does it take to
process the cache?

If take long time to build the cache, use persistent cache.

• How long does it take to sort?

If take long time to sort, you can redesign your data flow to push down the sort operation to the
database.

• How much time elapses before a blocking operation sends out the first row?

If your data flow contains resource-intensive operations after the blocking operation, you can add
Data_Transfer transforms to push-down the resource-intensive operations.

You can view the Monitor log from the following tools:
• The Designer, as the job executes, when you click the Monitor icon.
• The Administrator of the Management Console, when you click the Monitor link for a job from the

Batch Job Status page.

The Monitor log in the Designer shows the path for each object in the job, the number of rows processed,
and the elapsed time for each object. The Absolute time column displays the total time from the start
of the job to when the software completes the execution of the data flow object.

Related Topics
• Setting Monitor sample rate
• Using persistent cache
• Push-down operations
• Data_Transfer transform for push-down operations
• Reference Guide: Objects, Log

2012-11-2225

Measuring Performance

3.2.4 Reading the Performance Monitor for execution statistics

The Performance Monitor displays execution information for each work flow, data flow, and sub data
flow within a job. You can display the execution times in a table format. You can use the Performance
Monitor to answer questions such as the following:
• Which data flows might be bottlenecks?

• How much time did a a data flow or sub data flow take to execute?

• How many rows did the data flow or sub data flow process?

• How much memory did a specific data flow use?

Note:
Memory statistics (Cache Size column) display in the Performance Monitor only if you select theCollect
statistics for monitoring option when you execute the job.

3.2.4.1 To view the Performance Monitor

1. Access the Management Console with one of the following methods:
• In the Designer top menu bar, click Tools and select Management Console.

• Click Start > Programs > SAPBusinessObjects Data Services >Data ServicesManagement
Console.

2. On the launch page, click Administrator.
3. Select Batch > repository

4. On the Batch Job Status page, find a job execution instance.
5. Under Job Information for an instance, click Performance Monitor.

Related Topics
• To monitor and tune in-memory and pageable caches

3.2.5 Reading Operational Dashboards for execution statistics

2012-11-2226

Measuring Performance

Operational dashboard reports contain job and data flow execution information for one or more
repositories over a given time period (for example the last day or week). You can use operational
statistics reports to answer some of the following questions:
• Are jobs executing within the allotted time frames?
• How many jobs succeeded or failed over a given execution period?
• How is the execution time for a job evolving over time?
• How many rows did the data flow process?

3.2.5.1 To compare execution times for the same job over time

1. Open the Management Console via one of the following methods:
• In the Designer top menu bar, choose Tools > Management Console.
• Choose Start > Programs > SAP BusinessObjects Data Services x.x > Data Services

Management Console.

2. On the launch page, click Operational Dashboard.
3. Look at the graphs in Job Execution Statistic History or Job Execution Duration History to see if

performance is increasing or decreasing.
4. On the Job Execution Duration History page, if there is a specific day that looks high or low compared

to the other execution times, click that point on the graph to view the Job Execution Duration graph
for all of the jobs that ran that day.

5. Click View all history to compare different executions of a specific job or data flow.
6. On the Job Execution History tab, you can select a specific job and number of days.
7. On the Data Flow Execution History tab, you can select a specific job and number of days, as well

as search for a specific data flow.

Related Topics
• Management Console Guide: Operational Dashboard Reports

2012-11-2227

Measuring Performance

2012-11-2228

Measuring Performance

Tuning Overview

This section presents an overview of the different Data Services tuning options, with cross-references
to subsequent chapters for more details.

4.1 Strategies to execute jobs

4.1.1 Maximizing push-down operations to the database server

SAP BusinessObjects Data Services generates SQL SELECT statements to retrieve the data from
source databases. The software automatically distributes the processing workload by pushing down
as much as possible to the source database server.

Pushing down operations provides the following advantages:
• Use the power of the database server to execute SELECT operations (such as joins, Group By, and

common functions such as decode and string functions). Often the database is optimized for these
operations.

• Minimize the amount of data sent over the network. Fewer rows can be retrieved when the SQL
statements include filters or aggregations.

You can also do a full push down from the source to the target, which means the software sends SQL
INSERT INTO... SELECT statements to the target database. The following features enable a full push
down:
• Data_Transfer transform

• Database links and linked datastores

Related Topics
• Maximizing Push-Down Operations

2012-11-2229

Tuning Overview

4.1.2 Improving throughput

Use the following features to improve throughput:
• Using caches for faster access to data

You can improve the performance of data transformations by caching as much data as possible. By
caching data in memory, you limit the number of times the system must access the database.

• Bulk loading to the target

The software supports database bulk loading engines including the Oracle bulk load API. You can
have multiple bulk load processes running in parallel.

• Other tuning techniques
• Source-based performance options

• Join ordering

• Minimizing extracted data

• Using array fetch size

• Target-based performance options
• Loading method

• Rows per commit

• Job design performance options
• Loading only changed data

• Minimizing data type conversion

• Minimizing locale conversion

• Precision in operations

4.1.3 Using advanced tuning options

If your jobs have CPU-intensive and memory-intensive operations, you can use the following advanced
tuning features to improve performance:
• Parallel processes—Individual work flows and data flows can execute in parallel if you do not connect

them in the Designer workspace.

2012-11-2230

Tuning Overview

• Parallel threads—The software supports partitioned source tables, partitioned target tables, and
degree of parallelism. These options allow you to control the number of instances for a source,
target, and transform that can run in parallel within a data flow. Each instance runs as a separate
thread and can run on a separate CPU.

• Server groups and distribution levels—You can group Job Servers on different computers into a
logical component called a server group. A server group automatically measures resource availability
on each Job Server in the group and distributes scheduled batch jobs to the computer with the
lightest load at runtime. This functionality also provides a hot backup method. If one Job Server in
a server group is down, another Job Server in the group processes the job.

You can distribute the execution of data flows or sub data flows within a batch job across multiple
Job Servers within a Server Group to better balance resource-intensive operations.

Related Topics
• Using Parallel Execution
• Management Console Guide: Server Groups
• Using grid computing to distribute data flow execution

2012-11-2231

Tuning Overview

2012-11-2232

Tuning Overview

Maximizing Push-Down Operations

For SQL sources and targets, SAP BusinessObjects Data Services creates database-specific SQL
statements based on the data flow diagrams in a job. The software generates SQL SELECT statements
to retrieve the data from source databases. To optimize performance, the software pushes down as
many SELECT operations as possible to the source database and combines as many operations as
possible into one request to the database. It can push down SELECT operations such as joins, Group
By, and common functions such as decode and string functions.

Data flow design influences the number of operations that the software can push to the database. Before
running a job, you can view the SQL that is generated and adjust your design to maximize the SQL
that is pushed down to improve performance.

You can use database links and the Data_Transfer transform to pushdown more operations.

5.1 Push-down operations

By pushing down operations to the source database, Data Services reduces the number of rows and
operations that the engine must retrieve and process, which improves performance. When determining
which operations to push to the database, Data Services examines the database and its environment.

5.1.1 Full push-down operations

The Optimizer always first tries to do a full push-down operation. A full push-down operation is when
all transform operations can be pushed down to the databases and the data streams directly from the
source database to the target database. SAP BusinessObjects Data Services sends SQL INSERT
INTO... SELECT statements to the target database where SELECT retrieves data from the source.

The software does a full push-down operation to the source and target databases when the following
conditions are met:
• All of the operations between the source table and target table can be pushed down.

• The source and target tables are from the same datastore or they are in datastores that have a
database link defined between them.

To enable a full push-down from the source to the target, you can also use the following features:

2012-11-2233

Maximizing Push-Down Operations

• Data_Transfer transform

• Database links

For database targets that support the Allow merge or upsert option, when all other operations in the
data flow can be pushed down to the source database, the auto-correct loading operation may also be
pushed down for a full push-down operation to the target. The software sends an SQL MERGE INTO
target statement that implements the Ignore columns with value and Ignore columns with null
options.

5.1.2 Partial push-down operations

When a full push-down operation is not possible, SAP BusinessObjects Data Services still pushes down
the SELECT statement to the source database. Operations within the SELECT statement that the
software can push to the database include:
• Aggregations — Aggregate functions, typically used with a Group by statement, always produce a

data set smaller than or the same size as the original data set.

• Distinct rows — When you select Distinct rows from the Select tab in the query editor, the software
will only output unique rows.

• Filtering — Filtering can produce a data set smaller than or equal to the original data set.

• Joins — Joins typically produce a data set smaller than or similar in size to the original tables. The
software can push down joins when either of the following conditions exist:
• The source tables are in the same datastore

• The source tables are in datastores that have a database link defined between them

• Ordering — Ordering does not affect data-set size. The software can efficiently sort data sets that
fit in memory. It is recommended that you push down the Order By for very large data sets.

• Projection — Projection is the subset of columns that you map on the Mapping tab in the query
editor. Projection normally produces a smaller data set because it only returns columns needed by
subsequent operations in a data flow.

• Functions — Most functions that have equivalents in the underlying database are appropriately
translated. These functions include decode, aggregation, and string functions.

5.1.3 Operations that cannot be pushed down

SAP BusinessObjects Data Services cannot push some transform operations to the database. For
example:

2012-11-2234

Maximizing Push-Down Operations

• Expressions that include functions that do not have database correspondents

• Load operations that contain triggers

• Transforms other than Query

• Joins between sources that are on different database servers that do not have database links defined
between them.

Similarly, the software cannot always combine operations into single requests. For example, when a
stored procedure contains a COMMIT statement or does not return a value, the software cannot combine
the stored procedure SQL with the SQL for other operations in a query.

The software can only push operations supported by the DBMS down to that DBMS. Therefore, for
best performance, try not to intersperse SAP BusinessObjects Data Services transforms among
operations that can be pushed down to the database.

5.2 Push-down examples

The following are typical push-down scenarios.

5.2.1 Collapsing transforms to push down operations example

When determining how to push operations to the database, SAP BusinessObjects Data Services first
collapses all the transforms into the minimum set of transformations expressed in terms of the source
table columns. Next, the software pushes all possible operations on tables of the same database down
to that DBMS.

For example, the following data flow extracts rows from a single source table.

2012-11-2235

Maximizing Push-Down Operations

The first query selects only the rows in the source where column A contains a value greater than 100.
The second query refines the extraction further, reducing the number of columns returned and further
reducing the qualifying rows.

The software collapses the two queries into a single command for the DBMS to execute. The following
command uses AND to combine the WHERE clauses from the two queries:

SELECT A, MAX(B), C
FROM source
WHERE A > 100 AND B = C
GROUP BY A, C

The software can push down all the operations in this SELECT statement to the source DBMS.

5.2.2 Full push down from the source to the target example

If the source and target are in the same datastore, the software can do a full push-down operation
where the INSERT into the target uses a SELECT from the source. In the sample data flow in scenario
1, a full push down passes the following statement to the database:

INSERT INTO target (A, B, C)
SELECT A, MAX(B), C

FROM source
WHERE A > 100 AND B = C
GROUP BY A, C

If the source and target are not in the same datastore, the software can also do a full push-down
operation if you use one of the following features:
• Add a Data _Transfer transform before the target.
• Define a database link between the two datastores.

5.2.3 Full push down for auto correct load to the target example

For supported databases, if you enable the Auto correct load and Allow merge or upsert options,
the Optimizer may be able to do a full push-down operation where the SQL statement is a MERGE into
the target with a SELECT from the source.

In order for the Allow merge or upsert option to generate a MERGE statement, the primary key of the
source table must be a subset of the primary key of the target table and the source row must be unique
on the target key. In other words, there cannot be duplicate rows in the source data. If this condition is
not met, the Optimizer pushes down the operation using a database-specific method to identify, update,
and insert rows into the target table.

For example, suppose you have a data flow where the source and target tables are in the same datastore
and the Auto correct load and Allow merge or upsert options are set to Yes.

2012-11-2236

Maximizing Push-Down Operations

The push-down operation passes the following statement to an Oracle database:

MERGE INTO "ODS"."TARGET" s
USING
SELECT "SOURCE"."A" A , "SOURCE"."B" B , "SOURCE"."C" C

FROM "ODS"."SOURCE" "SOURCE"
) n

ON ((s.A = n.A))
WHEN MATCHED THEN
UPDATE SET s."B" = n.B,

s."C" = n.C
WHEN NOT MATCHED THEN
INSERT /*+ APPEND */ (s."A", s."B", s."C")
VALUES (n.A , n.B , n.C)

Similar statements are used for other supported databases.

5.2.4 Partial push down to the source example

If the data flow contains operations that cannot be passed to the DBMS, the software optimizes the
transformation differently than the previous two scenarios. For example, if Query1 called func(A) >
100, where func is a SAP BusinessObjects Data Services custom function, then the software generates
two commands:
• The first query becomes the following command which the source DBMS executes:

SELECT A, B, C
FROM source
WHERE B = C

• The second query becomes the following command which SAP BusinessObjects Data Services
executes because func cannot be pushed to the database:
SELECT A, MAX(B), C

FROM Query1
WHERE func(A) > 100

GROUP BY A, C

5.2.5 Push-down of SQL join example

If the tables to be joined in a query meet the requirements for a push-down operation, then the entire
query is pushed down to the DBMS.

To confirm that the query will be pushed down, look at the Optimized SQL. If the query shows a single
SELECT statement, then it will be pushed down.

For example, in the data flow shown below, the Department and Employee tables are joined with a
inner join and then the result of that join is joined with left outer join to the Bonus table.

2012-11-2237

Maximizing Push-Down Operations

The resulting Optimized SQL contains a single select statement and the entire query is pushed down
to the DBMS:

SELECT DEPARTMENT.DEPTID, DEPARTMENT.DEPARTMENT, EMPLOYEE.LASTNAME,
BONUS.BONUS
FROM (DEPARTMENT INNER JOIN EMPLOYEE
(ON DEPARTMENT.DEPTID=EMPLOYEE.DEPTID))
LEFT OUTER JOIN BONUS
ON (EMPLOYEE.EMPID = BONUS.EMPID)

Related Topics
• To view SQL
• Maximizing Push-Down Operations
• Reference Guide: Transforms, Query, Joins in the Query transform

5.3 To view SQL

Before running a job, you can view the SQL code that SAP BusinessObjects Data Services generates
for table sources in data flows. By examining the SQL code, you can verify that the software generates
the commands you expect. If necessary, you can alter your design to improve the data flow.
1. Validate and save data flows.
2. Open a data flow in the workspace.
3. Select Display Optimized SQL from the Validation menu.

Alternately, you can right-click a data flow in the object library and select Display Optimized SQL.

The "Optimized SQL" window opens and shows a list of datastores and the optimized SQL code for
the selected datastore. By default, the "Optimized SQL" window selects the first datastore.

The software only shows the SELECT generated for table sources and INSERT INTO... SELECT
for targets. It does not show the SQL generated for SQL sources that are not table sources, such
as:
• Lookup function

2012-11-2238

Maximizing Push-Down Operations

• Key_generation function

• Key_Generation transform

• Table_Comparison transform

4. Select a name from the list of datastores on the left to view the SQL that this data flow applies against
the corresponding database or application.

The following example shows the optimized SQL for the second datastore which illustrates a full
push-down operation (INSERT INTO... SELECT). This data flows uses a Data_Transfer transform
to create a transfer table that the software loads directly into the target.

INSERT INTO "DBO"."ORDER_AGG" ("SHIPCOUNTRY","SHIPREGION", "SALES_AGG")
SELECT "TS_Query_Lookup"."SHIPCOUNTRY" , "TS_Query_Lookup"."SHIPREGION" ,sum("TS_Query_Lookup"."SALES")
FROM"DBO"."TRANS2""TS_Query_Lookup"
GROUP BY "TS_Query_Lookup"."SHIPCOUNTRY" , "TS_Query_Lookup"."SHIPREGION"

In the "Optimized SQL" window you can:
• Use the Find button to perform a search on the SQL displayed.

• Use the Save As button to save the text as a .sql file.

If you try to use the Display Optimized SQL command when there are no SQL sources in your data
flow, the software alerts you. Examples of non-SQL sources include:
• Message sources

• File sources

• IDoc sources

If a data flow is not valid when you click the Display Optimized SQL option, the software alerts you.

Note:
The "Optimized SQL" window displays the existing SQL statement in the repository. If you changed
your data flow, save it so that the "Optimized SQL" window displays your current SQL statement.

5.4 Data_Transfer transform for push-down operations

Use the Data_Transfer transform to move data from a source or from another transform into the target
datastore and enable a full push-down operation (INSERT INTO... SELECT) to the target. You can use
the Data_Transfer transform to push-down resource-intensive operations that occur anywhere within
a data flow to the database. Resource-intensive operations include joins, GROUP BY, ORDER BY,
and DISTINCT.

5.4.1 Push down an operation after a blocking operation example

2012-11-2239

Maximizing Push-Down Operations

You can place a Data_Transfer transform after a blocking operation to enable Data Services to push
down a subsequent operation. A blocking operation is an operation that the software cannot push down
to the database, and prevents ("blocks") operations after it from being pushed down.

For example, you might have a data flow that groups sales order records by country and region, and
sums the sales amounts to find which regions are generating the most revenue. The following diagram
shows that the data flow contains a Pivot transform to obtain orders by Customer ID, a Query transform
that contains a lookup_ext function to obtain sales subtotals, and another Query transform to group the
results by country and region.

Because the Pivot transform and the lookup_ext function are before the query with the GROUP BY
clause, the software cannot push down the GROUP BY operation. Here is how the "Optimized SQL"
window would show the SELECT statement that the software pushes down to the source database:

SELECT "ORDERID", "CUSTOMERID", "EMPLOYEEID", "ORDERDATE", "REQUIREDDATE", "SHIPPEDDATE",, "SHIPVIA"
"FREIGHT", "SHIPNAME", "SHIPADDRESS", "SHIPCITY", "SHIPREGION", "SHIPPOSTALCODE", "SHIPCOUNTRY"
FROM "DBO"."ORDERS"

However, if you add a Data_Transfer transform before the second Query transform and specify a transfer
table in the same datastore as the target table, the software can push down the GROUP BY operation.

The Data_Transfer Editor window shows that the transfer type is Table and the transfer table is in the
same datastore as the target table (Northwind_DS.DBO.TRANS2).

Here's how the "Optimized SQL" window would show that the software pushed down the GROUP BY
to the transfer table TRANS2.

INSTER INTO "DBO"."ORDER_AGG" ("SHIPCOUTNRY", "SHIPREGION", "SALES_AGG")
SELECT "TS_Query_Lookup"."SHIPCOUNTRY" , "TS_Query_Lookup"."SHIPREGION" , sum("TS_Query_Lookup"."SALES")
FROM "DBO"."TRANS2""TS_Query_Lookup"
GROUP BY "TS_Query_Lookup"."SHIPCOUNTRY" , "TS_Query_Lookup"."SHIPREGION"

Related Topics
• Operations that cannot be pushed down

2012-11-2240

Maximizing Push-Down Operations

5.4.2 Using Data_Transfer tables to speed up auto correct loads example

Auto correct loading ensures that the same row is not duplicated in a target table, which is useful for
data recovery operations. However, an auto correct load prevents a full push-down operation from the
source to the target when the source and target are in different datastores.

For large loads using database targets that support the Allow merge or upsert option for auto correct
load, you can add a Data_Transfer transform before the target to enable a full push-down from the
source to the target. In order for the Allow merge or upsert option to generate a MERGE statement:
• the primary key of the source table must be a subset of the primary key of the target table
• the source row must be unique on the target key

In other words, there cannot be duplicate rows in the source data. If this condition is not met, the
Optimizer pushes down the operation using a database-specific method to identify, update, and insert
rows into the target table.

If the MERGE statement can be used, SAP BusinessObjects Data Services generates an SQL MERGE
INTO target statement that implements the Ignore columns with value value (if a value is specified
in the target transform editor) and the Ignore columns with null Yes/No setting.

For example, suppose you create a data flow that loads sales orders into an Oracle target table which
is in a different datastore from the source.

For this data flow, the Auto correct load option is active and set to Yes, and the Ignore columns with
null and Allow merge or upsert options are also active.

The SELECT statement that the software pushes down to the source database would look like the
following (as it would appear in the "Optimized SQL" window).

SELECT "ODS_SALESORDER"."SALES_ORDER_NUMBER" , "ODS_SALESORDER"."ORDER_DATE" , "ODS_SALESORDER"."CUST_ID"
FROM "ODS"."ODS_SALESORDER""ODS_SALESORDER"

When you add a Data_Transfer transform before the target and specify a transfer table in the same
datastore as the target, the software can push down the auto correct load operation.

The following MERGE statement is what the software pushes down to the Oracle target (as it appears
in the "Optimized SQL" window).

MERGE INTO "TARGET"."AUTO_CORRECT_LOAD2_TARGET" s
USING
(SELECT "AUTOLOADTRANSFER"."SALES_ORDER_NUMBER" SALES_ORDER_NUMBER,
"AUTOLOADTRANSFER"."ORDER_DATE" ORDER_DATE, "AUTOLOADTRANSFER"."CUST_ID" CUST_ID
FROM "TARGET"."AUTOLOADTRANSFER" "AUTOLOADTRANSFER") n
ON ((s.SALES_ORDER_NUMBER=n.SALES_ORDRE_NUMBER00
WHEN MATCHED THEN
UPDATE SET s."ORDER_DATE"=nvl(n.ORDER_DATE,s."ORDER_DATE"),
s."CUST_ID"=nbl(n.CUST_ID,s."CUST_ID"
WHEN NOT MATCHED THEN
INSERT(s."SALES_ORDER_NUMBER",s."ORDER_DATE",s."CUST_ID")
VALUES(n.SALES_ORDRE_NUMBER,n.ORDRE_DATE,n.CUSTID)

Similar statements are used for other supported databases.

2012-11-2241

Maximizing Push-Down Operations

5.5 Database link support for push-down operations across datastores

Various database vendors support one-way communication paths from one database server to another.
SAP BusinessObjects Data Services refers to communication paths between databases as database
links. The datastores in a database link relationship are called linked datastores.

The software uses linked datastores to enhance its performance by pushing down operations to a target
database using a target datastore. Pushing down operations to a database not only reduces the amount
of information that needs to be transferred between the databases and SAP BusinessObjects Data
Services but also allows the software to take advantage of the various DMBS capabilities, such as
various join algorithms.

With support for database links, the software pushes processing down from different datastores, which
can also refer to the same or different database type. Linked datastores allow a one-way path for data.
For example, if you import a database link from target database B and link datastore B to datastore A,
the software pushes the load operation down to database B, not to database A.

This section contains the following topics:
• Software support

• Example of push-down with linked datastores

• Generated SQL statements

• Tuning performance at the data flow or Job Server level

Related Topics
• Designer Guide: Datastores, Linked datastores

5.5.1 Software support

SAP BusinessObjects Data Services supports push-down operations using linked datastores on all
Windows and Unix platforms. It supports DB2, Oracle, and MS SQL server databases.

5.5.1.1 To take advantage of linked datastores

1. Create a database link on a database server that you intend to use as a target in a job.

2012-11-2242

Maximizing Push-Down Operations

The following database software is required. See the Supported Platforms document for specific
version numbers.
• For DB2, use the DB2 Information Services (previously known as Relational Connect) software

and make sure that the database user has privileges to create and drop a nickname.

To end users and client applications, data sources appear as a single collective database in DB2.
Users and applications interface with the database managed by the information server. Therefore,
configure an information server and then add the external data sources. DB2 uses nicknames
to identify remote tables and views.

See the DB2 database manuals for more information about how to create links for DB2 and
non-DB2 servers.

• For Oracle, use the Transparent Gateway for DB2 and MS SQL Server.

See the Oracle database manuals for more information about how to create database links for
Oracle and non-Oracle servers.

• For MS SQL Server, no special software is required.

Microsoft SQL Server supports access to distributed data stored in multiple instances of SQL
Server and heterogeneous data stored in various relational and non-relational data sources using
an OLE database provider. SQL Server supports access to distributed or heterogeneous database
sources in Transact-SQL statements by qualifying the data sources with the names of the linked
server where the data sources exist.

See the MS SQL Server database manuals for more information.

2. Create a database datastore connection to your target database.

5.5.2 Example of push-down with linked datastores

Linked datastores enable a full push-down operation (INSERT INTO... SELECT) to the target if all the
sources are linked with the target. The sources and target can be in datastores that use the same
database type or different database types.

The following diagram shows an example of a data flow that will take advantage of linked datastores:

2012-11-2243

Maximizing Push-Down Operations

The dataflow joins three source tables from different database types:
• ora_source.HRUSER1.EMPLOYEE on \\oracle_server1
• ora_source_2.HRUSER2.PERSONNEL on \\oracle_server2
• mssql_source.DBO.DEPARTMENT on \\mssql_server3.

The software loads the join result into the target table ora_target.HRUSER3.EMP_JOIN on
\\oracle_server1.

In this data flow, the user (HRUSER3) created the following database links in the Oracle database
oracle_server1.

Remote User
Remote (to database
link location) Connec-
tion Name

Local (to database link
location) Connection
Name

Database Link Name

HRUSER2oracle_server2oracle_server1orasvr2

DBOmssql_serveroracle_server1tg4msql

To enable a full push-down operation, database links must exist from the target database to all source
databases and links must exist between the following datastores:
• ora_target and ora_source
• ora_target and ora_source2
• ora_target and mssql_source

The software executes this data flow query as one SQL statement in oracle_server1:
INSERT INTO HR_USER3.EMP_JOIN (FNAME, ENAME, DEPTNO, SAL, COMM)
SELECT psnl.FNAME, emp.ENAME, dept.DEPTNO, emp.SAL, emp.COMM
FROM HR_USER1.EMPLOYEE emp, HR_USER2.PERSONNEL@orasvr2 psnl,
oracle_server1.mssql_server.DBO.DEPARTMENT@tg4msql dept;

2012-11-2244

Maximizing Push-Down Operations

5.5.3 Generated SQL statements

To see how SAP BusinessObjects Data Services optimizes SQL statements, use Display Optimized
SQL from the Validation menu when a data flow is open in the workspace.
• For DB2, it uses nicknames to refer to remote table references in the SQL display.

• For Oracle, it uses the following syntax to refer to remote table references: <remote_ta
ble>@<dblink_name>.

• For SQL Server, it uses the following syntax to refer to remote table references: <liked_server
>.<remote_database >.<remote_user >.<remote_table>.

5.5.4 Tuning performance at the data flow or Job Server level

You might want to turn off linked-datastore push downs in cases where you do not notice performance
improvements.

For example, the underlying database might not process operations from different data sources well.
Data Services pushes down Oracle stored procedures and external functions. If these are in a job that
uses database links, it will not impact expected performance gains. However, Data Services does not
push down functions imported from other databases (such as DB2). In this case, although you may be
using database links, Data Services cannot push the processing down.

Test your assumptions about individual job designs before committing to a large development effort
using database links.

5.5.4.1 For a data flow

On the data flow properties dialog, this product enables the Use database links option by default to
allow push-down operations using linked datastores. If you do not want to use linked datastores in a
data flow to push down processing, deselect the check box.

This product can perform push downs using datastore links if the tables involved share the same
database type and database connection name, or datasource name, even if the tables have different
schema names. However, problems with enabling this feature could arise, for example, if the user of
one datastore does not have access privileges to the tables of another datastore, causing a data access
problem. In such a case, you can disable this feature.

2012-11-2245

Maximizing Push-Down Operations

5.5.4.2 For a Job Server

You can also disable linked datastores at the Job Server level. However, the Use database links
option, at the data flow level, takes precedence.

Related Topics
• Designer Guide: Executing Jobs, Changing Job Server options

2012-11-2246

Maximizing Push-Down Operations

Using Caches

This section contains the following topics:
• Caching data

• Using persistent cache

• Monitoring and tuning caches

6.1 Caching data

You can improve the performance of data transformations that occur in memory by caching as much
data as possible. By caching data, you limit the number of times the system must access the database.

SAP BusinessObjects Data Services provides the following types of caches that your data flow can use
for all of the operations it contains:
• In-memory

Use in-memory cache when your data flow processes a small amount of data that fits in memory.

• Pageable cache

Use pageable cache when your data flow processes a very large amount of data that does not fit in
memory. When memory-intensive operations (such as Group By and Order By) exceed available
memory, the software uses pageable cache to complete the operation.

Pageable cache is the default cache type. To change the cache type, use the Cache type option on
the data flow Properties window.

Note:
If your data fits in memory, it is recommended that you use in-memory cache because pageable cache
incurs an overhead cost.

6.1.1 Caching sources

2012-11-2247

Using Caches

By default, the Cache option is set to Yes in a source table or file editor to specify that data from the
source is cached using memory on the Job Server computer. When sources are joined using the Query
transform, the cache setting in the Query transform takes precedence over the setting in the source.

The default value for Cache type for data flows is Pageable.

It is recommended that you cache small tables in memory. Calculate the approximate size of a table
with the following formula to determine if you should use a cache type of Pageable or In-memory.

of rows *
of columns *
20 bytes (average column size) *
1.3 (30% overhead)

table size = (in bytes)

Compute row count and table size on a regular basis, especially when:
• You are aware that a table has significantly changed in size.

• You experience decreased system performance.

If the table fits in memory, change the value of the Cache type option to In-memory in the Properties
window of the data flow.

Related Topics
• Caching joins

6.1.2 Caching joins

The Cache setting indicates whether the software should read the required data from the source and
load it into memory or pageable cache.

When sources are joined using the Query transform, the cache setting in the Query transform takes
precedence over the setting in the source. In the Query editor, the cache setting is set to Automatic by
default. The automatic setting carries forward the setting from the source table. The following table
shows the relationship between cache settings in the source, Query editor, and whether the software
will load the data in the source table into cache.

Effective Cache SettingCache Setting in Query EditorCache Setting in Source

YesAutomaticYes

NoAutomaticNo

YesYesYes

YesYesNo

2012-11-2248

Using Caches

Effective Cache SettingCache Setting in Query EditorCache Setting in Source

NoNoYes

NoNoNo

Note:

• If any one input schema has a cache setting other than Automatic specified in the Query editor, the
Data Services Optimizer considers only Query editor cache settings and ignores all source editor
cache settings.

• Best practice is to define the join rank and cache settings in the Query editor.

In the Query editor, cache a source only if it is being used as an inner source in a join.

When the cache setting is such that data will be cached if possible, a source is used as an inner source
in a join under the following conditions:
• The source is specified as the inner source of a left outer join.
• In an inner join between two tables, the source has a lower join rank.

Caching does not affect the order in which tables are joined.

If optimization conditions are such that the software is pushing down operations to the underlying
database, it ignores your cache setting.

If a table becomes too large to fit in the cache, ensure that the cache type is pageable.

Related Topics
• About join ordering

6.1.3 Changing cache type for a data flow

You can improve the performance of data transformations that occur in memory by caching as much
data as possible. By caching data, you limit the number of times the system must access the database.

To change the cache type for a data flow:
1. In the object library, select the data flow name.
2. Right-click and choose Properties.
3. On the General tab of the Properties window, select the desired cache type in the drop-down list for

the Cache type option.

2012-11-2249

Using Caches

6.1.4 Caching lookups

You can also improve performance by caching data when looking up individual values from tables and
files.

6.1.4.1 Using a Lookup function in a query

SAP BusinessObjects Data Services has three Lookup functions: lookup, lookup_seq, and
lookup_ext. The lookup and lookup_ext functions have cache options. Caching lookup sources
improves performance because the software avoids the expensive task of creating a database query
or full file scan on each row.

You can set cache options when you specify a lookup function. There are three caching options:
• NO_CACHE — Does not cache any values.

• PRE_LOAD_CACHE — Preloads the result column and compare column into memory (it loads the
values before executing the lookup).

• DEMAND_LOAD_CACHE — Loads the result column and compare column into memory as the
function executes.

Use this option when looking up highly repetitive values that are a small subset of the data and when
missing values are unlikely.

Demand-load caching of lookup values is helpful when the lookup result is the same value multiple
times. Each time the software cannot find the value in the cache, it must make a new request to the
database for that value. Even if the value is invalid, the software has no way of knowing if it is missing
or just has not been cached yet.

When there are many values and some values might be missing, demand-load caching is significantly
less efficient than caching the entire source.

6.1.4.2 Using a source table and setting it as the outer join

Although you can use lookup functions inside SAP BusinessObjects Data Services queries, an alternative
is to expose the translate (lookup) table as a source table in the data flow diagram, and use an outer
join (if necessary) in the query to look up the required data. This technique has some advantages:

2012-11-2250

Using Caches

• You can graphically see the table the job will search on the diagram, making the data flow easier to
maintain

• The software can push the execution of the join down to the underlying RDBMS (even if you need
an outer join)

This technique also has some disadvantages:
• You cannot specify default values in an outer join (default is always null), but you can specify a

default value in lookup_ext.

• If an outer join returns multiple rows, you cannot specify what to return, (you can specify MIN or
MAX in lookup_ext).

• The workspace can become cluttered if there are too many objects in the data flow.

• There is no option to use DEMAND_LOAD caching, which is useful when looking up only a few
repetitive values in a very large table.

Tip:
If you use the lookup table in multiple jobs, you can create a persistent cache that multiple data flows
can access. For more information, see Using persistent cache.

6.1.5 Caching table comparisons

You can improve the performance of a Table_Comparison transform by caching the comparison table.
There are three modes of comparisons:
• Row-by-row select

• Cached comparison table

• Sorted input

Of the three, Row-by-row select will likely be the slowest and Sorted input the fastest.

Tip:

• If you want to sort the input to the table comparison transform, then choose the Sorted input option
for comparison.

• If the input is not sorted, then choose the Cached comparison table option.

6.1.6 Specifying a pageable cache directory

2012-11-2251

Using Caches

If the memory-consuming operations in your data flow exceed the available memory, SAP Business
Objects Data Services uses pageable cache to complete the operation. Memory-intensive operations
include the following operations:
• Distinct

• Functions such as count_distinct and lookup_ext

• Group By

• Hierarchy_Flattening

• Order By

Note:
The default pageable cache directory is %LINKDIR\Log\PCache. If your data flows contain
memory-consuming operations, change this value to a pageable cache directory that:

• Contains enough disk space for the amount of data you plan to profile.

• Is on a separate disk or file system from the SAP BusinessObjects Data Services system.

Change the directory in the Specify a directory with enough disk space for pageable cache option
in the Server Manager, under Runtime resources configured for this computer.

6.2 Using persistent cache

Persistent cache datastores provide the following benefits for data flows that process large volumes of
data.
• You can store a large amount of data in persistent cache which SAP BusinessObjects Data Services

quickly pages into memory each time the job executes. For example, you can access a lookup table
or comparison table locally (instead of reading from a remote database).

• You can create cache tables that multiple data flows can share (unlike a memory table which cannot
be shared between different real-time jobs). For example, if a large lookup table used in a lookup_ext
function rarely changes, you can create a cache once and subsequent jobs can use this cache
instead of creating it each time.

Persistent cache tables can cache data from relational database tables and files.

Note:
You cannot cache data from hierarchical data files such as XML messages and SAP IDocs (both of
which contain nested schemas). You cannot perform incremental inserts, deletes, or updates on a
persistent cache table.

You create a persistent cache table by loading data into the persistent cache target table using one
data flow. You can then subsequently read from the cache table in another data flow. When you load
data into a persistent cache table, SAP BusinessObjects Data Services always truncates and recreates
the table.

2012-11-2252

Using Caches

6.2.1 Using persistent cache tables as sources

After you create a persistent cache table as a target in one data flow, you can use the persistent cache
table as a source in any data flow. You can also use it as a lookup table or comparison table.

Related Topics
• Reference Guide: Objects, Persistent cache source

6.3 Monitoring and tuning caches

This section describes the following topics:

Related Topics
• Using statistics for cache self-tuning
• To monitor and tune in-memory and pageable caches

6.3.1 Using statistics for cache self-tuning

SAP BusinessObjects Data Services uses cache statistics collected from previous job runs to
automatically determine which cache type to use for a data flow. Cache statistics include the number
of rows processed.

The default cache type is pageable. the software can switch to in-memory cache when it determines
that your data flow processes a small amount of data that fits in memory.

6.3.1.1 To automatically choose the cache type

1. Run your job with options Collect statistics for optimization.
2. Run your job again with option Use collected statistics (this option is selected by default).

2012-11-2253

Using Caches

6.3.2 To monitor and tune in-memory and pageable caches

You can also monitor and choose the cache type to use for the data flow.
1. Test run your job with options Collect statistics for optimization and Collect statistics for

monitoring.

Note:
The option Collect statistics for monitoring is very costly to run because it determines the cache size
for each row processed.

2. Run your job again with option Use collected statistics (this option is selected by default).
3. Look in the Trace Log to determine which cache type was used.

• The first time you run the job or if you have not previously collected statistics, the following
messages indicate that cache statistics are not available and the sub data flows use the default
cache type, pageable.
Cache statistics for sub data flow <GroupBy_DF_1_1> are not available to be used for optimization and
need to be collected before they can be used.

Sub data flow <GroupBy_DF_1_1> using PAGEABLE Cache with <1280 MB> buffer pool.

• You might see the following message that indicates that the software is switching to In-memory
cache:
Cache statistics determined that sub data flow <GroupBy_DOP2_DF_1_4> uses <1> caches with a total
size of <1920> bytes. This is less than (or equal to) the virtual memory <1342177280> bytes available
for caches. Statistics is switching the cache type to IN MEMORY.

Sub data flow <GroupBy_DOP2_DF_1_4> using IN MEMORY Cache.

Because pageable cache is the default cache type for a data flow, you might want to permanently
change the Cache type to In-Memory in the data flow "Properties" window.

• You might see the following messages that indicate on sub data flow uses IN MEMORY cache
and the other sub data flow uses PAGEABLE cache:
Sub data flow <Orders_Group_DF_1> using IN MEMORY Cache.

...

Sub data flow <Orders_Group_DF_2> using PAGEABLE Cache with <1536 MB> buffer pool.

4. Look in the Administrator Performance Monitor to view data flow statistics and see the cache size.
a. On the Administrator, select Batch > repository name
b. On the Batch Job Status page, find a job execution instance.
c. Under Job Information for an instance, click Performance Monitor. The Administrator opens

the Table tab of the Performance Monitor page. This tab shows a tabular view of the start time,
stop time, and execution time for each work flow, data flow, and sub data flow within the job.

d. To display statistics for each object within a data flow or sub data flow, click one of the data flow
names on the Table tab. The Transform tab displays the following statistics.

2012-11-2254

Using Caches

DescriptionStatistic

Name that you gave the object (source, transform, or target) in the Designer.Name

Type of object within the data flow. Possible values include Source, Mapping,
Target.Type

Date and time this object instance started execution.Start time

Date and time this object instance stopped execution.End time

Time (in seconds) the object took to complete execution.Execution time (sec)

Number of rows that this object processed.Row Count

Size (in kilobytes) of the cache that was used to process this object.

Note:
This statistics displays only if you selected Collect statistics for monitoring
for the job execution.

Cache Size (KB)

5. If the value in Cache Size is approaching the physical memory limit on the job server, consider
changing the Cache type of a data flow from In-memory to Pageable.

2012-11-2255

Using Caches

2012-11-2256

Using Caches

Using Parallel Execution

You can set SAP BusinessObjects Data Services to perform data extraction, transformation, and loads
in parallel by setting parallel options for sources, transforms, and targets. In addition, you can set
individual data flows and work flows to run in parallel by simply not connecting them in the workspace.
If the Job Server is running on a multi-processor computer, it takes full advantage of available CPUs.

7.1 Parallel data flows and work flows

You can explicitly execute different data flows and work flows in parallel by not connecting them in a
work flow or job. SAP BusinessObjects Data Services coordinates the parallel steps, then waits for all
steps to complete before starting the next sequential step.

For example, use parallel processing to load dimension tables by calling work flows in parallel. Then
specify that your job creates dimension tables before the fact table by moving it to the left of a second
(parent) work flow and connecting the flows.

Parallel engine processes execute the parallel data flow processes. Note that if you have more than
eight CPUs on your Job Server computer, you can increase Maximum number of engine processes
to improve performance. To change the maximum number of parallel engine processes, use the Job
Server options (Tools > Options> Job Server > Environment).

2012-11-2257

Using Parallel Execution

7.2 Parallel execution in data flows

For batch jobs, SAP BusinessObjects Data Services allows you to execute parallel threads in data
flows.

7.2.1 Table partitioning

SAP BusinessObjects Data Services processes data flows with partitioned tables based on the amount
of partitioning defined.

7.2.1.1 Data flow with source partitions only

If you have a data flow with a source that has two partitions connected to a query and a target, it appears
in the workspace as shown in the following diagram:

At runtime, the software translates this data flow to:

The software instantiates a source thread for each partition, and these threads run in parallel. The data
from these threads later merges into a single stream by an internal merge transform before processing
the query.

7.2.1.2 Data flow with target partitions only

If you have a data flow with a target that has two partitions connected to a query and a source, it appears
in the workspace as shown in the following diagram:

2012-11-2258

Using Parallel Execution

At runtime, the software translates this data flow to:

The software inserts an internal Round Robin Split (RRS) transform after the Query transform, which
routes incoming rows in a round-robin fashion to internal Case transforms. The Case transforms evaluate
the rows to determine the partition ranges. Finally, an internal Merge transform collects the incoming
rows from different Case transforms and outputs a single stream of rows to the target threads. The
Case , Merge , and the target threads execute in parallel.

7.2.1.3 Dataflow with source and target partitions

If you have a data flow with a source that has two partitions connected to a query and a target that has
two partitions, it appears in the workspace as shown in the following diagram:

At runtime, the software translates this data flow to:

The source threads execute in parallel and the Case , Merge , and targets execute in parallel.

7.2.1.4 Viewing, creating, and enabling table partitions

Oracle databases support range, list, and hash partitioning. You can import this information as table
metadata and use it to extract data in parallel. You can use range and list partitions to load data to
Oracle targets. You can also specify logical range and list partitions using SAP BusinessObjects Data
Services metadata for Oracle tables.

2012-11-2259

Using Parallel Execution

In addition, it provides the ability to specify logical range partitions for DB2, Microsoft SQL Server,
Sybase ASE, and Sybase IQ tables by modifying imported table metadata.

SAP BusinessObjects Data Services uses partition information by instantiating a thread at runtime for
each partition. These threads execute in parallel. To maximize performance benefits, use a
multi-processor environment.

7.2.1.4.1 To view partition information
1. Import a table into SAP BusinessObjects Data Services.
2. In the Datastores tab of the object library, right-click the table name and select Properties.
3. Click the Partitions tab.

When you import partitioned tables from your database, you will find these partitions displayed on
the Partitions tab of the table's Properties window. The partition name appears in the first column.
The columns that are used for partitioning appear as column headings in the second row.

If you import a table that does not have partitions, you can create logical partitions using the Partitions
tab of the table's Properties window.

7.2.1.4.2 To create or edit table partition information
1. In the Datastores tab of the object library, right-click the table name and select Properties.
2. In the Properties window, click the Partitions tab.
3. Select a partition type.

DescriptionPartition Type

This table is not partitioned.None

Each partition contains a set of rows with column values less than
those specified.

For example, if the value of column one is 100,000, then the data
set for partition one will include rows with values less than 100,000
in column one.

Range

Each partition contains a set of rows that contain the specified col-
umn values.List

Note:
If you imported an Oracle table with hash partitions, you cannot edit the hash settings in SAP
BusinessObjects Data Services. The Partitions tab displays the hash partition name and ID as
read-only information. However, you can change the partition type to Range or List to create logical
range or list partitions for an Oracle table imported with hash partitions.

2012-11-2260

Using Parallel Execution

4. Add, insert, or remove partitions and columns using the tool bar. (See table at the end of this
procedure.)

5. Select the name of a column from each column list box.
6. Enter column values for each partition.

SAP BusinessObjects Data Services validates the column values entered for each partition according
to the following rules:
• Values can be literal numbers and strings or datetime types.

• Column values must match column data types.

• Literal strings must include single quotes: 'Director'.

• For range partitions, the values for a partition must be greater than the values for the previous
partition.

• For the last partition, you can enter the value MAXVALUE to include all values.

7. Click OK.

If the validation rules described in the previous step are not met, you will see an error message.

DescriptionIcon

Add Partition

Insert Partition

Remove Partition

Add Column

Insert Column

Remove Column

The number of partitions in a table equals the maximum number of parallel instances that the software
can process for a source or target created from this table.

In addition to importing partitions or creating and editing partition metadata, enable the partition settings
when you configure sources and targets.

7.2.1.4.3 To enable partition settings in a source or target table
1. Drop a table into a data flow and select Make Source or Make Target.

2012-11-2261

Using Parallel Execution

2. Click the name of the table to open the source or target table editor.
3. Enable partitioning for the source or target:

a. For a source table, click the Enable Partitioning check box.
b. For a target table, click the Options tab, then click the Enable Partitioning check box.

4. Click OK.

When the job executes, the softwarre generates parallel instances based on the partition information.

Note:
If you are loading to partitioned tables, a job will execute the load in parallel according to the number
of partitions in the table. If you set Enable Partitioning to Yes and Include in transaction to No,
the Include in transaction setting overrides the Enable Partitioning option. For example, if your
job is designed to load to a partitioned table but you set Include in transaction to Yes and enter a
value for Transaction order, when the job executes, the software will include the table in a transaction
load and does not parallel load to the partitioned table.

7.2.1.4.4 Tip

If the underlying database does not support range partitioning and if you are aware of a natural distribution
of ranges, for example using an Employee Key column in an Employee table, then you can edit the
imported table metadata and define table ranges. The software would then instantiate multiple reader
threads, one for each defined range, and execute them in parallel to extract the data.

Note:
Table metadata editing for partitioning is designed for source tables. If you use a partitioned table as
a target, the physical table partitions in the database must match the metadata table partitions in SAP
BusinessObjects Data Services. If there is a mismatch, the software will not use the partition name to
load partitions. Consequently, the whole table updates.

7.2.2 Degree of parallelism

Degree of Parallelism (DOP) is a property of a data flow that defines how many times each transform
defined in the data flow replicates for use on a parallel subset of data. If there are multiple transforms
in a data flow, SAP BusinessObjects Data Services chains them together until it reaches a merge point.

You can run transforms in parallel by entering a number in the Degree of Parallelism box on a data
flow's Properties window. The number is used to replicate transforms in the data flow which run as
separate threads when the Job Server processes the data flow.

7.2.2.1 Degree of parallelism and transforms

2012-11-2262

Using Parallel Execution

The Query transform always replicates when you set DOP to a value greater than 1. SAP
BusinessObjects Data Services also replicates query operations such as Order By, Group By, join, and
functions such as lookup_ext.

The Table Comparison replicates when you use the Row-by-row select and Cached comparison table
comparison methods.
• Map_Operation
• History_Preserving
• Pivot

There are two basic scenarios:
• DOP and a data flow with a single transform
• DOP and a data flow with multiple transforms

DOP and a data flow with a single transform
The following figures show runtime instances of a data flow with a DOP of 1, and the same data flow
with a DOP of 2.

Figure 7-1: Runtime instance of a data flow where DOP =1

Figure 7-2: Runtime instance of a data flow where DOP = 2

With a DOP greater than 1, the software inserts an internal Round Robin Split (RRS) that transfers data
to each of the replicated queries. The replicated queries execute in parallel, and the results merge into
a single stream by an internal Merge transform.

DOP and a data flow with multiple transforms
The following figures show runtime instances of a data flow with a DOP of 1, and the same data flow
with a DOP of 2. Notice multiple transforms in a data flow replicate and chain when the DOP is greater
than 1.

Figure 7-3: Runtime instance of a data flow where DOP =1

2012-11-2263

Using Parallel Execution

Figure 7-4: Runtime instance of a data flow where DOP = 2

When there are multiple transforms in a data flow and the DOP is greater than 1, the software carries
the replicated stream as far as possible, then merges the data into a single stream.

7.2.2.2 To set the Degree of Parallelism for a data flow

The degree of parallelism (DOP) is a data flow property that acts on transforms added to the data flow.
1. In the object library, select the Data Flow tab.
2. Right-click the data flow icon and select Properties.
3. Enter a number in the Degree of parallelism option.

The default value for degree of parallelism is 0. If you set an individual data flow's degree of parallelism
to this default value, then you can control it using a Global_DOP value which affects all data flows
run by a given Job Server. If you use any other value for a data flow's degree of parallelism, it
overrides the Global_DOP value.

You can use the local and global DOP options in different ways. For example:
• If you want to globally set all data flow DOP values to 4, but one data flow is too complex and

you do not want it to run in parallel, you can set the Degree of parallelism for this data flow
locally. From the data flow's Properties window, set this data flow's Degree of parallelism to 1.
All other data flows will replicate and run transforms in parallel after you set the Global_DOP
value to 4. The default for the Global_DOP value is 2.

• If you want to set the DOP on a case-by-case basis for each data flow, set the value for each
data flow's Degree of parallelism to any value except zero.

You set the Global_DOP value in the Job Server options.

4. Click OK.

Related Topics
• Designer Guide: Executing Jobs, Changing Job Server options

7.2.2.3 Degree of parallelism and joins

2012-11-2264

Using Parallel Execution

If your Query transform joins sources, DOP determines the number of times the join replicates to process
a parallel subset of data.

This section describes two scenarios:
• DOP and executing a join as a single process
• DOP and executing a join as multiple processes

DOP and executing a join as a single process
The following figures show runtime instances of a data flow that contains a join with a DOP of 1 and
the same data flow with a DOP of 2. You use join ranks to define the outer source and inner source. In
both data flows, the inner source is cached in memory.

Figure 7-5: Runtime instance of a join where DOP =1

Figure 7-6: Runtime instance of a join where DOP = 2

With a DOP greater than one, the software inserts an internal Round Robin Split (RRS) that transfers
data to each of the replicated joins. The inner source is cached once, and each half of the outer source
joins with the cached data in the replicated joins. The replicated joins execute in parallel, and the results
merge into a single stream by an internal Merge transform.

DOP and executing a join as multiple processes
When you select the Run JOIN as a separate process in the Query transform, you can split the
execution of a join among multiple processes. the software creates a sub data flow for each separate
process.

The following figure shows a runtime instance of a data flow that contains a join with a DOP of 2 and
the Run JOIN as a separate process option selected.

2012-11-2265

Using Parallel Execution

Figure 7-7: Runtime instance of a join that runs as multiple processes and DOP = 2

The data flow becomes four sub data flows (indicated by the blue dotted and dashed line in the figure):
• The first sub data flow uses an internal hash algorithm to split the data.
• The next two sub data flows are the replicated joins that run as separate processes.
• The last sub data flow merges the data and loads the target.

Tip:
If DOP is greater than one, select either job or data flow for the Distribution level option when you
execute the job. If you execute the job with the value sub data flow for Distribution level, the Hash
Split sends data to the replicated queries that might be executing on different Job Servers. Because
the data is sent on the network between different Job Servers, the entire data flow might be slower.

Related Topics
• About join ordering
• Caching joins
• Using grid computing to distribute data flow execution

7.2.2.4 Degree of parallelism and functions

You can set stored procedures and custom functions to replicate with the transforms in which they are
used. To specify this option, select the Enable parallel execution check box on the function's Properties
window. If this option is not selected and you add the function to a transform, the transform will not
replicate and run in parallel even if its parent data flow has a value greater than 1 set for Degree of
parallelism.

When enabling functions to run in parallel, verify that:
• Your database will allow a stored procedure to run in parallel

• A custom function set to run in parallel will improve performance

All built-in functions, except the following, replicate if the transform they are used in replicates due to
the DOP value:

2012-11-2266

Using Parallel Execution

• min()• avg()

• previous_row_value()• count()

• print()• count_distinct()

• raise_exception()• double_metaphone()

• raise_exception_ext()• exec()

• set_env()• get_domain_description()

• sleep()• gen_row_num()

• smtp_to()• gen_row_num_by_group()

• soundex()• is_group_changed()

• sql()• key_generation()

• sum()• mail_to()

• total_rows()• max()

7.2.2.5 To enable stored procedures to run in parallel

Use the Enable parallel execution option to set functions to run in parallel when the transforms in
which they are used execute in parallel.
1. In the Datastores tab of the object library, expand a Datastore node.
2. Expand its Function node.
3. Right-click a function and select Properties.
4. In the Properties window, click the Function tab.
5. Click the Enable Parallel Execution check box.
6. Click OK.

2012-11-2267

Using Parallel Execution

7.2.2.5.1 To enable custom functions to run in parallel
1. In the Custom Functions tab of the object library, right-click a function name and select Properties.
2. In the Properties window, click the Function tab.
3. Click the Enable Parallel Execution check box.
4. Click OK.

7.2.2.6 Tips

DOP can degrade performance if you do not use it judiciously. The best value to choose depends on
the complexity of the flow and number of CPUs available. For example, on a computer with four CPUs,
setting a DOP greater than two for the following data flow will not improve performance but can potentially
degrade it due to thread contention.

If your data flow contains an Order By or a Group By that is not pushed down to the database, put them
at the end of a data flow. A sort node (Order By, Group By) is always a merge point, after which the
engine proceeds as if the DOP value is 1. For information on viewing the SQL statements pushed down
to the database, see To view SQL.

7.2.3 Combining table partitioning and a degree of parallelism

Different settings for source and target partitions and the degree of parallelism result in different behaviors
in the SAP BusinessObjects Data Services engine. The sections that follow show some examples. For
all the following scenarios, the data flow appears as follows:

7.2.3.1 Two source partitions and a DOP of three

2012-11-2268

Using Parallel Execution

When a source has two partitions, it replicates twice. The input feeds into a merge-round-robin splitter
(MRRS) that merges the input streams and splits them into a number equal to the value for DOP (in
this case, three outputs to the query transform). The stream then merges and feeds into the target.

Tip:
If the target is not partitioned, set the Number of loaders option equal to the DOP value. Depending
on the number of CPUs available, set the DOP value equal to the number of source partitions as a
general rule. This produces a data flow without the Merge Round Robin Split and each partition pipes
the data directly into the consuming transform.

7.2.3.2 Two source partitions and a DOP of two

When the number of source partitions is the same as the value for DOP, the engine merges before the
target (or before any operation that requires a merge, such as aggregation operations) and proceeds
in a single stream to complete the flow.

7.2.3.3 Two source partitions, DOP of three, two target partitions

When the number of source partitions is less then the value for DOP, the input feeds into a
merge-round-robin splitter (MRRS) that merges the input streams and splits them into a number equal
to the value for DOP. The engine then merges the data before the target to equal the number of target
partitions, then proceeds to complete the flow.

2012-11-2269

Using Parallel Execution

Tip:
If the number of target partitions is not equal to the number of source partitions, set the Number of
loaders option equal to the DOP value and do not enable partitioning for the target. Depending on the
number of CPUs available, set the DOP value equal to the number of source partitions as a general
rule. This produces a data flow without the Merge Round Robin Split and each partition pipes the data
directly into the consuming transform.

7.2.3.4 Two source partitions, DOP of two, and two target partitions

The best case situation is when the following conditions exist:
• The source and target are partitioned the same way.

• The source and target have the same number of partitions.

• DOP is equal to the same number of partitions.

When a source has two partitions, it replicates twice. Because the DOP value is two, the query transform
replicates twice. When a target has two partitions, it replicates twice. The following figure shows that
each source partition feeds directly into a replicated query transform, and the output from each query
feeds directly into a replicated target.

7.2.4 File multi-threading

You can set the number of threads used to process some sources and targets. The Parallel process
threads option is available on the:
• File format editor
• Source file editor

2012-11-2270

Using Parallel Execution

• Target file editor
• Properties window of an ABAP data flow

Without multi-threading:
• With delimited file reading, the SAP BusinessObjects Data Services reads a block of data from the

file system and then scans each character to determine if it is a column delimiter, a row delimiter,
or a text delimiter. Then it builds a row using an internal format.

• For positional file reading, the software does not scan character by character, but it still builds a row
using an internal format.

• For file loading, processing involves building a character-based row from the internal row format.

You can set these time-consuming operations to run in parallel. You can use the Parallel process
threads option to specify how many threads to execute in parallel to process the I/O blocks.

Note:
Enabling CPU hyperthreading can negatively affect the performance of servers and is therefore not
supported.

Related Topics
• Designer Guide: File Formats
• Reference Guide: Objects, Source
• Reference Guide: Objects, Target

7.2.4.1 Flat file sources

To use the Parallel process threads option, the following conditions must be met:
• In the file format editor:

• For delimited files, no text delimiters are defined.

For fixed-width files, having a text delimiter defined does not prevent the file from being read by
parallel process threads.

You can set SAP BusinessObjects Data Services to read flat file data in parallel in most cases
because the majority of jobs use fixed-width or column-delimited source files that do not have
text delimiters specified.

• An end-of-file (EOF) marker for the file's input/output style is not specified.

• The value of the row delimiter is not set to {none}. A row delimiter can be {none} only if the
file is a fixed-width file.

• If the file has a multi-byte locale and you want to take advantage of parallel process threads, set
the row delimiter as follows:
• The length of the row delimiter must be 1. If the codepage of the file is UTF-16, the length of

the row delimiter can be 2.
• The row delimiter hex value must be less than 0x40.

2012-11-2271

Using Parallel Execution

• In the Source File Editor, no number has been entered for Rows to read.

The Rows to read option indicates the maximum number of rows that the software reads. It is normally
used for debugging. Its default value is none.

• The maximum row size does not exceed 128 KB.

If a file source needs to read more than one file, for example, *.txt is specified for the File(s) option in
the file format editor, the software processes the data in the first file before the data in the next file. It
performs file multi-threading one file at a time.

7.2.4.2 Flat file targets

If you enter a positive value for Parallel process threads, Data Services parallel processes flat file
targets when the maximum row size does not exceed 128KB.

7.2.4.3 Tuning performance

The Parallel process threads option is a performance enhancement for some sources and targets.
Performance is defined as the total elapsed time used to read a file source.

A multi-threaded file source or target achieves high performance by maximizing the utilization of the
CPUs on your Job Server computer. You will notice higher CPU usage when you use this feature. You
might also notice higher memory usage because the number of process threads you set (each consisting
of blocks of rows that use 128 kilobytes) reside in memory at the same time.

To tune performance, adjust the value for Parallel process threads. Ideally, have at least as many
CPUs as process threads. For example, if you enter the value 4 for Parallel process threads, have
at least four CPUs on your Job Server computer.

However, increasing the value for process threads does not necessarily improve performance. The file
reads and loads achieve their best performance when the work load is distributed evenly among all the
CPUs and the speed of the file's input/output (I/O) thread is comparable with the speed of the process
threads.

The I/O thread for a file source reads data from a file and feeds it to process threads. The I/O thread
for a file target takes data from process threads and loads it to a file. Therefore, if a source file's I/O
thread is too slow to keep the process threads busy, there is no need to increase the number of process
threads.

If there is more than one process thread on one CPU, that CPU will need to switch between the threads.
There is an overhead incurred in creating these threads and switching the CPU between them.

2012-11-2272

Using Parallel Execution

7.2.4.4 Tips

The best value for Parallel process threads depends on the complexity of your data flow and the
number of available processes. If your Job Server is on a computer with multiple CPUs, the values for
file sources and targets should be set to at least two.

After that, experiment with different values to determine the best value for your environment.

Here are some additional guidelines:
• If Parallel process threads is set to none, then flat file reads and loads are not processed in parallel.

• If Parallel process threads is set to 1, (meaning that one process thread will spawn) and your Job
Server computer has one CPU, then reads and loads can occur faster than single-threaded file
reads and loads because SAP BusinessObjects Data Services reads the I/O thread separately and
concurrently with the process thread.

• If Parallel process threads is set to 4, four process threads will spawn. You can run these threads
on a single CPU. However, using four CPUs would more likely maximize the performance of flat file
reads and loads.

2012-11-2273

Using Parallel Execution

2012-11-2274

Using Parallel Execution

Distributing Data Flow Execution

The previous chapter describes how SAP BusinessObjects Data Services can run a single process as
multiple threads that run in parallel on a multiprocessor computer. Using Degree of Parallelism (DOP),
it can execute each thread on a separate CPU on the computer.

This section describes how the software can split a process (data flow) into multiple processes (sub
data flows) that can take advantage of more memory across multiple computers or on the same computer
that has more than two gigabytes of memory. For example, if your computer has eight gigabytes of
memory, you can have four sub data flows that each can use up to two gigabytes.

With this capability, the software can distribute CPU-intensive and memory-intensive operations (such
as join, grouping, table comparison and lookups). This distribution of data flow execution provides the
following potential benefits:
• Better memory management by taking advantage of more CPU power and physical memory

• Better job performance and scalability by taking advantage of grid computing

You can create sub data flows so that the software does not need to process the entire data flow in
memory at one time. You can also distribute the sub data flows to different job servers within a server
group to use additional memory and CPU resources.

This section contains the following topics:
• Splitting a data flow into sub data flows

• Using grid computing to distribute data flow execution

8.1 Splitting a data flow into sub data flows

8.1.1 Run as a separate process option

If your data flow contains multiple resource-intensive operations, you can run each operation as a
separate process (sub data flow) that uses separate resources (memory and computer) from each other
to improve performance and throughput. When you specify multiple Run as separate process options

2012-11-2275

Distributing Data Flow Execution

in objects in a data flow, SAP BusinessObjects Data Services splits the data flow into sub data flows
that run in parallel.

The Run as a separate process option is available on resource-intensive operations that including
the following:
• Hierarchy_Flattening transform
• Associate transform
• Country ID transform
• Global Address Cleanse transform
• Global Suggestion Lists transform
• Match Transform
• United States Regulatory Address Cleanse transform
• User-Defined transform
• Query operations that are CPU-intensive and memory-intensive:

• Join
• GROUP BY
• ORDER BY
• DISTINCT

• Table_Comparison transform
• Lookup_ext function
• Count_distinct function
• Search_replace function

8.1.2 Examples of multiple processes for a data flow

A data flow can contain multiple resource-intensive operations that each require large amounts of
memory or CPU utilization. You can run each resource-intensive operation as a separate process that
can use more memory on a different computer or on the same computer that has more than two gigabytes
of memory. For example, you might have a data flow that sums sales amounts from a lookup table and
groups the sales by country and region to find which regions are generating the most revenue. Other
than the source and target, the data flow contains a Query transform for the lookup_ext function to
obtains sales subtotals and another Query transform to group the results by country and region.

To define separate processes in this sample data flow, take one of the following actions:
• When you define the Lookup_ext function in the first query transform, select the Run as a separate

process option.

• When you define the Group By operation in the second query transform, select the Run GROUP
BY as a separate process option on the Advanced tab.

2012-11-2276

Distributing Data Flow Execution

8.1.2.1 Scenario 1: Run multiple sub data flows with DOP set to 1

The following diagram shows how SAP BusinessObjects Data Services splits this data flow into two
sub data flows when you specify the Run as a separate process option for either the Lookup_ext
function or the Group By.

The software generates sub data flow names that follow this format:

DFName_executionGroupNumber_indexInExecutionGroup

• DFName is the name of the data flow.

• executionGroupNumber is the order that the software executes a group of sub data flows

• indexInExecutionGroup is the sub data flow within an execution group.

When you execute the job, the Trace Log shows that the software creates two sub data flows that
execute in parallel and have different process IDs (Pids). For example, the following trace log shows
two sub data flows GroupBy_DF_1_1 and GroupBy_DF_1_2 that each start at the same time and have
a different Pid than the parent data flow GroupBy_DF.

2012-11-2277

Distributing Data Flow Execution

8.1.2.2 Scenario 2: Run multiple sub data flows with DOP greater than 1

When Degree Of Parallelism (DOP) is set to a value greater than 1, each transform defined in the data
flow replicates for use on a parallel subset of data.

Set DOP to a value greater than 1 on the data flow Properties window.

The following diagram shows the sub data flows that Data Services generates for GroupBy_DOP2_Job
when the Run GROUP BY as a separate process is selected and DOP set to 2.

2012-11-2278

Distributing Data Flow Execution

When you execute the job, the Trace Log shows that the software creates sub data flows that execute
in parallel with different process IDs (Pids). For example, the following trace log shows the following
four sub data flows that start concurrently and that each have a different Pid than the parent data flow
GroupBy_DOP2_DF:
• GroupBy_DOP2_DF_1_1

• GroupBy_DOP2_DF_1_2

• GroupBy_DOP2_DF_1_3

• GroupBy_DOP2_DF_1_4

2012-11-2279

Distributing Data Flow Execution

Tip:
When your data flow has DOP is greater than one, select either job or data flow for theDistribution
level option when you execute the job. If you execute the job with the value sub data flow for
Distribution level, the Round-Robin Split or Hash Split sends data to the replicated queries that might
be executing on different job servers. Because the data is sent on the network between different job
servers, the entire data flow might be slower.

Related Topics
• Degree of parallelism
• Using grid computing to distribute data flow execution

2012-11-2280

Distributing Data Flow Execution

8.1.3 Data_Transfer transform

The Data_Transfer transform creates transfer tables in datastores to enable the software to push down
operations to the database server. The Data_Transfer transform creates two sub data flows and uses
the transfer table to distribute the data from one sub data flow to the other sub data flow. The sub data
flows execute serially.

Related Topics
• Reference Guide: Transforms, Data_Transfer

8.1.4 Examples of multiple processes with Data_Transfer

The following are typical scenarios of when you might use the Data_Transfer transform to split a data
flow into sub data flows to push down operations to the database server.

8.1.4.1 Scenario 1: Sub data flow to push down join of file and table sources

Your data flow might join an Orders flat file and a Orders table, perform a lookup_ext function to obtain
sales subtotals, and another Query transform to group the results by country and region.

2012-11-2281

Distributing Data Flow Execution

8.1.4.1.1 To define sub data flows to push down a join of a file and table
1. Add a Data_Transfer transform between the Orders file source and the Query transform.

2. Select the value Table from the drop-down list in the Transfer type option in the Data_Transfer
editor.

3. For Table name in the Table options area, browse to the datastore that contains the source table
that the Query joins to this file. Double-click the datastore name and enter a name for the transfer
table on the Input table for Data_Transfer window.

In this example, browse to the same datastore that contains the Orders table and enter
Orders_FromFile in Table name.

4. After you save the data flow and click ValidationDisplay Optimized SQL..., the Optimized SQL
window shows that the join between the transfer table and source Orders table is pushed down to
the database.
SELECT "Data_Transfer_Orders_Flatfile"."PRODUCTID" , "ORDERS"."SHIPCOUNTRY" , "ORDERS"."SHIPREGION" ,
"Data_Transfer_Orders_Flatfile"."ORDERID"
FROM "DBO"."ORDERS_FROMFILE" "Data_Transfer_Orders_Flatfile","DBO"."ORDERS""ORDERS"
WHERE ("Data_Transfer_Orders_Flatfile"."ORDERID" = "ORDERS"."ORDERID")

SAP BusinessObjects Data Services can push down many operations without using the Data_Transfer
transform.

5. When you execute the job, the Trace Log shows messages that indicate that the software created
two sub data flows with different Pids to run the different operations serially.

Related Topics
• Push-down operations

8.1.4.2 Scenario 2: Sub data flow to push down memory-intensive operations

2012-11-2282

Distributing Data Flow Execution

You can use the Data_Transfer transform to push down memory-intensive operations such as Group
By or Order By.

For the sample data flow in Scenario 1: Sub data flow to push down join of file and table sources, you
might want to push down the Group By operation.

8.1.4.2.1 To define sub data flows to push down another operation
1. Add a Data_Transfer transform between the Lookup and GroupBy query transforms, as the following

diagram shows.

2. Select the value Table from the drop-down list in the Transfer type option in the Data_Transfer
editor.

3. For Table name in the Table options area, browse to the datastore that contains the target table.
Double-click the datastore name and enter a name for the transfer table on the Input table for Da
ta_Transfer window.

4. After you save the data flow and click Validation > Display Optimized SQL, the Optimized SQL
window shows that the software pushes the GroupBy down to the target database.
INSERT INTO "DBO"."JOINTARGET"("PRODUCTID","SHIPCOUNTRY","SHIPREGION","SALES")

SELECT "Data_Transfer_1_Lookup"."PRODUCTID", "Data_Transform_1_Lookup"."SHIPCOUNTRY", "Data_Trans
fer_1_Lookup"."SHIPREGION",sum("Data_Transfer_1_Lookup"."SALES")
FROM "DBO"."GROUPTRANS""Data_Transfer_1_Lookup"
GROUP BY "Data_Transfer_1_Lookup"."PRODUCTID","Data_Transfer_1_Lookup"."SHIPCOUNTRY", "Data_Trans
fer_1_Lookup"."SHIPREGION"

The software can push down many operations without using the Data_Transfer transform.

5. When you execute the job, the messages indicate that the software creates three sub data flows to
run the different operations serially.

Related Topics
• Push-down operations

2012-11-2283

Distributing Data Flow Execution

8.2 Using grid computing to distribute data flow execution

SAP BusinessObjects Data Services takes advantage of grid computing when you:
• Define a group of Job Servers (called a Server Group) that acts as a server grid. The software

leverages available CPU and memory on the computers where the Job Servers execute.

• Specify Distribution levels for data flow execution to process smaller data sets or fewer transforms
on different Job Servers in a Server Group. Each data flow or sub data flow consumes less virtual
memory.

8.2.1 Server Group

You can distribute the execution of a job or a part of a job across multiple Job Servers within a Server
Group to better balance resource-intensive operations. A server group automatically measures resource
availability on each Job Server in the group and distributes scheduled batch jobs to the Job Server with
the lightest load at runtime.

Related Topics
• Management Console Guide: Server Groups

8.2.2 Distribution levels for data flow execution

When you execute a job, you can specify the following values on the Distribution level option:
• Job level - An entire job can execute on an available Job Server.

• Data flow level - Each data flow within a job can execute on an available Job Server and can take
advantage of additional memory (up to two gigabytes) for both in-memory and pageable cache on
another computer.

• Sub data flow level - A resource-intensive operation (such as a sort, table comparison, or table
lookup) within a data flow can execute on an available Job Server. Each operation can take advantage
of up to two gigabytes additional memory for both in-memory and pageable cache on another
computer.

2012-11-2284

Distributing Data Flow Execution

8.2.2.1 Job level

When you choose a Server Group to execute your job, the default distribution level is Job.

When Distribution level has the value Job, all of the processes that belong to the job execute on the
same computer. For example, section Scenario 2: Run multiple sub data flows with DOP greater than
1 describes the data flow GroupBy_DOP2_DF which is designed to generate four sub data flows as
follows.

When you execute the job, the following Trace log messages indicate the distribution level for each sub
data flow:

Starting sub data flow <GroupBy_DOP2_DF_1_1> on job server host <SJ-C>, port <3502>. Distribution level
<Job>.
Starting sub data flow <GroupBy_DOP2_DF_1_2> on job server host <SJ-C>, port <3502>. Distribution level
<Job>.
Starting sub data flow <GroupBy_DOP2_DF_1_3> on job server host <SJ-C>, port <3502>. Distribution level
<Job>.
Starting sub data flow <GroupBy_DOP2_DF_1_4> on job server host <SJ-C>, port <3502>. Distribution level
<Job>.

When Distribution level is Job, the software uses named pipes to send data between the sub data
flow processes on the same computer, as the following diagram indicates with the blue arrows.

2012-11-2285

Distributing Data Flow Execution

8.2.2.2 Data flow level

When Distribution level has the value Data flow, all of the processes that belong to each data flow
can execute on a different computer. For example, the following GroupBy_Q1_Q2_Job has two data
flows: GroupQ1_DF and GroupQ1_DF that process orders for the first quarter and second quarter,
respectively.

• The solid blue lines enclose each process that can execute on a separate Job Server. In this example,
each data flow can execute on a different computer than the computer where the job started.

• SAP BusinessObjects Data Services uses Inter-Process Communications (IPC) to send data between
the job and data flows on the different computers. IPC uses the peer-to-peer port numbers specified
on the Start port and End port options in the Server Manager.

Note:
The default values for Start port and End port are 1025 and 32767, respectively. Change these values
if you want to restrict the number of ports or if some of the ports are already in use.

When you execute the job, the Trace log displays messages such as the following that indicate the
communication port for the data flow and the distribution level for each data flow. All of the sub data
flows within a data flow run on the same computer.

Data flow communication using peer-to-peer method with the port range <1025> to <32767>.
...
Peer-to-peer connection server for session process is listening at host <SJ-C>, port <1025>.
Job <GroupBy_Q1_Q2_Job> is started.
Starting data flow </GroupBy_Q1_Q2_Job/GroupBy_Q1_DF> on job server host <SJ-C>, port <3502>. Distribution
level <Data
flow>. Data flow submitted to server group <sg_direpo>. Load balancing algorithm <Least load>. Server group
load statistics
from job server <mssql_lap_js SJ-C 3502>:
<mssql_lap_js SJ-C 3502> System Load <47%> Number of CPUs <1>
<MSSQL2005_JS SJ-W-C 3500> System Load <70%> Number of CPUs <2>
Process to execute data flow <GroupBy_Q1_DF> is started.
Starting sub data flow <GroupBy_Q1_DF_1_1> on job server host <SJ-C>, port <3502>. Distribution level <Data
flow>.
Starting sub data flow <GroupBy_Q1_DF_1_2> on job server host <SJ-C>, port <3502>. Distribution level <Data
flow>.
Starting sub data flow <GroupBy_Q1_DF_1_3> on job server host <SJ-C>, port <3502>. Distribution level <Data
flow>.

2012-11-2286

Distributing Data Flow Execution

Starting sub data flow <GroupBy_Q1_DF_1_4> on job server host <SJ-C>, port <3502>. Distribution level <Data
flow>.

8.2.2.3 Sub data flow level

When Distribution level has the value Sub data flow, each sub data flow within a data flow can
execute on a different computer. In the example that section Scenario 2: Run multiple sub data flows
with DOP greater than 1 describes, the GroupBy_DOP2_Job has four sub data flows as follows.

• The solid blue lines enclose each process that can execute on a separate Job Server. In this example,
each sub data flow can execute on a different computer than the computer where the job started.

• The yellow arrows indicate the Inter-Process Communications (IPC) that SAP BusinessObjects Data
Services uses to send data between the job and sub data flows on the different computers. IPC the
peer-to-peer port numbers specified on the Start port and End port options in the Server Manager.

The default values for Start port and End port are 1025 and 32767, respectively. Change these
values if you want to restrict the number of ports or if some of the ports are already in use.

Note:
If you find that sending data across the network is causing your data flow to execute longer, you might
want to change Distribution level from Sub data flow to Data flow or Job.

When you execute the job, the Trace log displays messages such as the following that indicate that
the software selects a job server for each sub data flow based on the system load on each computer:

Starting sub data flow <GroupBy_DOP2_DF_1_1> on job server host <SJ-C>, port <3502>. Distribution level <Sub
data flow>. Sub data
flow submitted to server group <sg_direpo>. Load balancing algorithm <Least load>. Server group load
statistics
from job server <mssql_lap_js SJ-C 3502>:
<mssql_lap_js SJ-C 3502> System Load <21%> Number of CPUs <1>
<MSSQL2005_JS SJ-W-C 3500> System Load <70> Number of CPUs <1>
Starting sub data flow <GroupBy_DOP2_DF_1_2> on job server host <SJ-C>, port <3502>. Distribution level <Sub
data
flow>. Sub data flow submitted to server group <sg_direpo>. Load balancing algorithm <Least load>. Server
group load statistics
from job server <mssql_lap_js SJ-C 3502>:
<mssql_lap_js SJ-C 3502> System Load <21%> Number of CPUs <1>
<MSSQL2005_JS SJ-W-C 3500> System Load <70> Number of CPUs <2>

The following messages show the communication port that each sub data flow uses:

Peer-to-peer connection server for sub data flow <GroupBy_DOP2_DF_1_1> is listening at host <SJ-C>, port
<1027>.

2012-11-2287

Distributing Data Flow Execution

Process to execute sub data flow <GroupBy_DOP2_DF_1_4> is started.
Peer-to-peer connection server for sub data flow <GroupBy_DOP2_DF_1_2> is listening at host <SJ-C>, port
<1028>.
Peer-to-peer connection server for sub data flow <GroupBy_DOP2_DF_1_3> is listening at host <SJ-C>, port
<1029>.
Peer-to-peer connection server for sub data flow <GroupBy_DOP2_DF_1_4> is listening at host <SJ-C>, port
<1030>.

2012-11-2288

Distributing Data Flow Execution

Bulk Loading and Reading

SAP BusinessObjects Data Services supports capabilities present in most supported databases that
enable you to load and in some cases read data in bulk rather than using SQL statements. Some
general considerations when using bulk loading and reading are:
• Specify bulk-loading options on the Data Services target table editor on the Options and Bulk

Loader Options tabs.
• Specify Teradata reading options on the source table editor Teradata options tab.
• Most databases do not support bulk loading with a template table.

For details on the options for each database type, see the Reference Guide.

9.1 Bulk loading in DB2 Universal Database

SAP BusinessObjects Data Services supports bulk loading to the DB2 Universal Database.

9.1.1 When to use each DB2 bulk-loading method

SAP BusinessObjects Data Services supports multiple bulk-loading methods for DB2 Universal Database
(UDB) on Windows and UNIX. The following table lists the methods that you can select depending on
your requirements.

Note:
You cannot bulk load data to DB2 databases that run on AS/400 or z/OS (MVS) systems.

2012-11-2289

Bulk Loading and Reading

RestrictionsAdvantagesDescriptionLoad method

• Must specify Recoverable and
Copy target directory options to
enable recovery because DB2
logging is not enabled for CLI
Load.

• The DB2 UDB server and client
must be Version 8.0 or later.

• Stops loading when it encounters
the first rejected row.

• Provides the fastest way
to bulk load.

• Eliminates some parame-
ters because no intermedi-
ate data file is required.

• Can put rows that violate
the unique key constraint
into an exception table.

Loads a large vol-
ume of data at high
speed by passing it
directly from memory
to the table on the
DB2 UDB server.

CLI Load

• Must have disk space for interme-
diate data file.

• Must specify Recoverable and
Copy target directory options to
enable recovery because DB2
logging is not enabled for DB2
Load.

• The DB2 UDB server and client
must be Version 8.0 or later.

• This method is faster than
the import utility.

• Puts rejected rows into a
"dump" file.

• Can put rows that violate
unique key constraint into
an exception table.

Loads a large vol-
ume of data by writ-
ing to a data file that
it passes to the DB2
UDB server.

Load

• Because DB2 logs each INSERT
statement, this method is the
slowest way to bulk load data.

• The Data Services Job Server and
DB2 UDB server must be on the
same computer.

• Recovery is enabled auto-
matically because DB2
logging occurs during im-
port.

• Performs referential integri-
ty or table constraint
checking in addition to
unique key constraint
checking.

Loads a large vol-
ume of data by using
a SQL INSERT
statement to write
data from an input
file into a table or
view.

Import

9.1.2 Using the DB2 CLI load method

The DB2 Call Level Interface (CLI) load method performs faster than the bulk load or import utilities
because it does not write the data to an intermediate file. Instead, the CLI load method writes the data
from memory (where SAP BusinessObjects Data Services extracted or transformed the data) directly
to the table on the DB2 server.

2012-11-2290

Bulk Loading and Reading

9.1.2.1 To configure your system to use the CLI load method

1. Enter the appropriate information in the datastore editor, on the DB2 Properties tab.
Fields include:
• Bulk loader user name: The user name SAP BusinessObjects Data Services uses when loading

data with the CLI load option. For bulk loading, you might specify a different user name, for
example one with import and load permissions.

• Bulk loader password: The password SAP BusinessObjects Data Services uses when loading
with the CLI load option.

2. To use a different bulk loader working directory than the default (<DS_COMMON_DIR>\log\bulk
loader), specify the directory name in the datastore editor on the Connections tab.

9.1.2.2 To use the CLI load method in a job

1. Open the DB2 target table editor in the Designer workspace.
2. Select the Bulk Loader Options tab below the table schema area.
3. In the Bulk loader list, select CLI load.

The window updates to show all CLI load options. CLI load options include these existing bulk load
options:
• Mode
• Warning row count
• Exception table name
• Recoverable
• Copy target directory

Additional or changed CLI load options include:
• Maximum bind array: Defines the maximum number of rows extracted or transformed before the

software sends the data to the DB2 table or view. If you do not enter a value, Data Services uses
the CLI load default value of 10000 rows.

• Clean up bulk loader directory after load: If you select this option, the software deletes the message
file when the CLI load completes successfully. Because the CLI load obtains the data from memory,
Data Services creates no control or data files.

Related Topics
• Reference Guide: Objects, Target tables

2012-11-2291

Bulk Loading and Reading

9.1.3 Using the DB2 bulk load utility

The DB2 load utility performs faster than the import utility because it writes data directly into the data
file.

9.1.3.1 To configure your system to use the load utility

1. Connect to the DB2 Version 8.x target database that uses the following:
• For all platforms, run:

bind <LINK_DIR>/bin/db2bulkload.bnd blocking all grant public

2. Determine how Data Services will transmit data files to DB2. Depending on your configuration, there
are different ways to transmit data files.
For example, if your Data Services Job Server and the DB2 server reside on different computers,
you can choose one of the following methods:
• FTP: Data Services generates the data file and uses FTP to send the file to the DB2 server. To

use the FTP option, you must define the FTP host name, user name, and password in the DB2
datastore you create in the Designer.

• Data file on DB2 client computer: SAP BusinessObjects Data Services writes to the data file on
the DB2 client computer, and the DB2 client transfers the data directly to the DB2 server during
the load process. To use this option, you must select Data file on client machine on the Bulk
Loader Options tab when you define the target in your job.

The following matrix outlines supported data file transmission methods.

Data file transmission methodsConfiguration

Automatic data transmissionData Services and DB2 server on same comput-
er

FTP or data file on DB2 client computer.Data Services and DB2 server on different
computer

3. If Data Services and DB2 are on different computers, you must provide a working directory for Data
Services on the DB2 server. Data Services instructs the DB2 load process to generate the file for
rejected rows on the DB2 server at this location.

4. Enter the appropriate information in the datastore editor, on the DB2 Properties tab. Fields include:

2012-11-2292

Bulk Loading and Reading

• Bulk loader user name—The user name the software uses when loading data with the bulk
loader option. For bulk loading, you might specify a different user name—one who has import
and load permissions, for example.

• Bulk loader password—The password the software uses when loading with the bulk loader
option.

• FTP host name—If this field is left blank or contains the name of the computer where the Job
Server resides, the software assumes that DB2 and SAP BusinessObjects Data Services share
the same computer and that FTP is unnecessary. When FTP is unnecessary, all other FTP-related
fields can remain blank.

• FTP user name—Must be defined to use FTP.
• FTP password—Must be defined to use FTP.
• Server working directory—The working directory for the load utility on the computer that runs

the DB2 server. You must complete this field whenever the DB2 server and the Job Server run
on separate computers. Data Services instructs the DB2 load process to generate the file for
rejected rows on the DB2 server at this location.

5. If Data Services will use FTP and the DB2 server runs on Windows NT, verify connectivity with the
FTP server.
If your Job Server runs on Windows NT:
• Connect to the FTP server using the command:

ftp <ServerName>

• Type the command:

put <DS_COMMON_DIR>\conf\DSConfig.txt<Server working
directory>\conf\DSConfig.txt

where <DS_COMMON_DIR> is the common SAP BusinessObjects Data Services program data
directory and <Server working directory> is the working directory entered on the datastore's
DB2 Properties tab.

You can only use the load utility if this command succeeds.

If your Job Server runs on UNIX:
• Connect to the FTP server.
• Change directories to the Server working directory entered on the DB2 Properties tab on the

datastore editor.

For example, if the directory is c:\temp, type: cd c:\temp

You can only use the load utility if this command succeeds.

6. To use a different bulk loader working directory than the default (<DS_COMMON_DIR>\log\bulk
loader), specify the directory name in the datastore editor on the Connections tab.

9.1.3.2 To use the load utility in a job

2012-11-2293

Bulk Loading and Reading

1. Open the DB2 target table editor in the Designer workspace.
2. Select the Bulk Loader Options tab below the table schema area.
3. In the Bulk loader list, select load.

The window updates to show all load options. Load options include these existing import bulk loader
options:
• Generate files only
• Clean up bulk loader directory
• Text delimiter
• Column delimiter

Additional load options include:
• Mode: Determines load mode. Valid values are:

• Insert: Appends the new records into the target table
• Replace: Deletes the existing records, then inserts the loaded data

• Save count:Determines the consistency point while loading data into tables.
• Warning row count: Defines the number of warnings allowed for each load operation.
• Exception table name: Defines the table into which the DB2 server loads rows that violate a table

defined with constraints. Rows that violate those constraints are deleted from the target table and
inserted into the exception table.

• Recoverable: Enables or disables data recovery.
• When this option is not selected (disabled), the load operation is not recoverable because DB2

does not log the loading of data.
• When selected (enabled), DB2 makes a copy of the loaded portion of the table. DB2 uses this

copy in the roll-forward phase of database recovery. You must define the path in theCopy target
directory for this copy.

• Copy target directory: Defines the directory of the copy files when you enable both the database
forward log recovery and select the Recoverable option. SAP BusinessObjects Data Services
supports only the copy files option for the DB2 CLI load method.

• Data file on client machine: When you select this option, the software writes to the data file on the
DB2 client machine. SAP BusinessObjects Data Services does not need to FTP the data file because
the DB2 client transfers the data directly to the DB2 server during the load process. To use this
option:
• You must use DB2 Version 8.x or later.
• The target DB2 cannot be a DB2 enterprise (extended edition environment).
• The target table and database must not be partitioned.
• This option is only applicable if SAP BusinessObjects Data Services and DB2 are on different

servers.

When you execute the DB2 bulk load utility, DB2 automatically generates the following files:
• Local message file (named .log) in the bulk loader working directory. DB2 writes output messages

into this log file.
• "Dump" file (named .bad) in the DB2 server working directory. DB2 writes rejected input rows into

this .bad file. If you clear the Data file on client machine option, SAP BusinessObjects Data

2012-11-2294

Bulk Loading and Reading

Services uses FTP to send the .bad file to the bulk loader working directory and deletes it after the
load completes successfully.

Check the trace log to find either of these files.

9.1.4 Using the import utility

SAP BusinessObjects Data Services also supports bulk loading in the DB2 Universal Database 5.2
environment using the import utility. For the software to initiate DB2 bulk loading by this method directly,
the Job Server and DB2 must be located on the same system. If they are not, use the following procedure
to initiate bulk loading:
1. Generate a control file and data file. Check Generate files only in the target table editor on the Bulk

Loader Options tab.

2. Manually move the control file and data file to the system where the target database is located.

3. Start the execution of the bulk loader manually.

9.2 Bulk loading in HP Neoview

SAP BusinessObjects Data Services supports bulk loading to HP Neoview via Neoview Transporter.

For detailed information about HP Neoview loading options and their behavior, see the relevant HP
Neoview product documentation.

To use Neoview Transporter, you must also install the following components:
• Neoview Transporter Java Client
• Java JRE version 1.5 or newer
• Neoview JDBC Type 4 Driver
• Neoview ODBC Windows Driver (for Windows)
• Neoview UNIX Drivers (for connecting to a database on UNIX)
• Neoview Command Interface

Note:

• If you are using multibyte data on Windows, you must change the Windows regional settings to the
multibyte language, for example, Japanese.

• When you install the Java Client, an environment variable called NVTHOME is created and will point
to the location of the Neoview Transporter base directory. You may receive an error in SAP
BusinessObjects Data Services if NVTHOME is not defined.

2012-11-2295

Bulk Loading and Reading

HP Neoview recommends that you use the bulk-loading method to load data for faster performance.
The SAP BusinessObjects Data Services bulk loader for HP Neoview supports UPDATE and UPSERT
as well as INSERT operations, which allows for more flexibility and performance.

SAP BusinessObjects Data Services generates a control file as input into Neoview Transporter. The
control file specifies the data files and the target tables to be loaded. Being in UTF-8, the control file
supports multibyte data.

By default, HP Neoview uses the SQL insert operation. For SQL update and upsert options, the control
file specifies the columns used in the WHERE clause and the columns to be updated in the UPDATE
clause. By default, SAP BusinessObjects Data Services uses the primary key columns in the WHERE
clause.

To bulk load to a HP Neoview target table, the software:
• Creates a control file in UTF-8

• Loads data from the source into the file or named pipe in UTF-8

• Invokes Neoview Transporter

9.2.1 How Data Services and HP Neoview use the file options to load

You can choose to use either named pipes or data files as staging for loading the data. Choose from
the following file options:
• Data file (for Windows and UNIX)

• Named pipe (for UNIX only)

Data file
SAP BusinessObjects Data Services runs bulk-loading jobs using a staging data file as follows:
1. The software generates staging data file(s) containing data to be loaded into a HP Neoview table.

2. The software generates a control file to be used by Neoview Transporter.

Named pipe
SAP BusinessObjects Data Services runs bulk-loading jobs using named pipes as follows:
1. The software generates a control file that Neoview Transporter uses to manipulate the database.

2. The software creates a pipe to contain the data to apply into an HP Neoview table.

On UNIX, the pipe is a FIFO (first in, first out) file that has name of this format:

/temp/filename.dat

3. The software invokes Neoview Transporter with the control file as input.

4. The software writes data to the pipes.

2012-11-2296

Bulk Loading and Reading

5. Neoview Transporter reads data from the pip and applies data to the HP Neoview table.

9.2.2 Using the UPSERT bulk operation

The purpose of the HP Neoview Upsert operation is to update a row, but if no row matches the update,
the row is inserted.

In SAP BusinessObjects Data Services, you enable Upsert on the target table editor's Bulk Loader
Options tab. In the Data Services options section, for Bulk Operation, select Upsert (the default is
Insert) in the SQL Operation list.

After selecting Upsert, notice you can also enable the Use input keys option on the target editor's
Options tab. The Use input keys option will assign the input primary keys as primary keys in the
target table.

Related Topics
• Reference Guide: Objects, Target tables

9.3 Bulk loading in Informix

SAP BusinessObjects Data Services supports Informix bulk loading. For detailed information about
Informix bulk-loading utility options and their behavior in the Informix DBMS environment, see the
relevant Informix product documentation.

Setting up Informix for bulk-loading requires that you set the INFORMIXDIR, INFORMIXSERVER, and
PATH environment variables.

For the software to initiate Informix bulk loading directly, the Job Server and the target database must
be located on the same system.

Note:
SAP BusinessObjects Data Services provides Informix bulk-loading support only for single-byte character
ASCII delimited files (not for fixed-width files).

9.3.1 To set Informix server variables

2012-11-2297

Bulk Loading and Reading

For Windows platforms, configure the environment variables in the $LINK_DIR\bin\dbloadIfmx.bat
script.
set INFORMIXDIR=C:\path\to\informix\installation
set INFORMIXSERVER=ol_svr_custom
set PATH=%INFORMIXDIR%\bin;%PATH%

For UNIX platforms, configure the environment variables in the $LINK_DIR/bin/dbloadIfmx.sh
script.
export INFORMIXDIR=/path/to/informix/installation
export INFORMIXSERVER=ol_svr_custom
export PATH=$INFORMIXDIR/bin:$PATH

9.4 Bulk loading in Microsoft SQL Server

SAP BusinessObjects Data Services supports Microsoft SQL Server bulk loading through the SQL
Server ODBC bulk copy API. For detailed information about the SQL Server ODBC bulk copy API
options and their behavior in the Microsoft SQL Server DBMS environment, see the relevant Microsoft
SQL Server product documentation.

9.4.1 To use the SQL Server ODBC bulk copy API

1. From the Tools menu, select Options > Job Server > General.
2. For Section, enter al_engine.
3. For Key, enter UseSQLServerBulkCopy.
4. Select TRUE (default) or FALSE. If you leave the default, the software uses the SQL Server ODBC

bulk copy API. If you set this parameter to FALSE, the software overrides the default and uses the
SQLBulkOperations API.

9.4.2 Network packet size option

When loading to SQL Server, the client caches rows until it either fills a network packet or reaches the
commit size (regardless of whether the packet is full). Then the client sends the packet to the server.
You can affect performance by tuning commit size and network packet size. You can change these
sizes on the Bulk Loader Options tab for SQL Server:
• Rows per commit

This option lets you specify the number of rows to put in the cache before issuing a commit.

2012-11-2298

Bulk Loading and Reading

• Network packet size

This option lets you specify network packet size in kilobytes. The default packet size is 4 kilobytes.

Note:
It is recommended that you set the Rows per commit and Network packet size parameters to avoid
sending many partially filled packets over the network and ensure that the packet size contains all rows
in the commit.

9.4.3 Maximum rejects option

The Maximum rejects parameter (on the Bulk Loader Options page) can also affect your SQL Server
bulk-loading performance. When you set Maximum rejects to 0, SAP BusinessObjects Data Services
stops at the first error it encounters and does not cache rows in the transaction (caching rows in a
transaction allows the software to process each row even if an error occurs during the transaction
commit process.)

When you do not specify a value for Maximum rejects , the software ignores the rejected rows, logs
warnings, and continues processing.

9.5 Bulk loading in Netezza

SAP BusinessObjects Data Services supports bulk loading to Netezza Performance Servers.

For detailed information about Netezza loading options and their behavior in the Netezza environment,
see the relevant Netezza product documentation.

Netezza recommends using the bulk-loading method to load data for faster performance. Unlike some
other bulk loaders, the SAP BusinessObjects Data Services bulk loader for Netezza supports UPDATE
and DELETE as well as INSERT operations, which allows for more flexibility and performance.

9.5.1 Netezza bulk-loading process

To bulk load to a Netezza target table, SAP BusinessObjects Data Services:
• Creates an external table that is associated with a local file or named pipe

• Loads data from the source into the file or named pipe

• Loads data from the external table into a staging table by executing an INSERT statement

2012-11-2299

Bulk Loading and Reading

• Loads data from the staging table to the target table by executing a set of INSERT/UPDATE/DELETE
statements

9.5.2 Options overview

From the Bulk Loader Options tab of your Netezza target table editor, select one of these methods
depending on your Netezza environment:
• Named pipe— SAP BusinessObjects Data Services streams data as it is written to the named pipe

through the external table to the staging table. For files that are larger than 4 GB in size, select this
option for faster performance.

• File— SAP BusinessObjects Data Services writes the data to a file before loading through the
external table to the staging table. For files that are smaller than 4 GB in size, select this option for
faster performance.

• None— SAP BusinessObjects Data Services does not use bulk loading.

Because the bulk loader for Netezza also supports UPDATE and DELETE operations, the following
options (on the target table editor Options tab) are also available for Netezza bulk loading.
• Column comparison
• Number of loaders
• Use input keys
• Update key columns
• Auto correct load

Related Topics
• Reference Guide: Objects, Target tables

9.5.3 Configuring bulk loading for Netezza

2012-11-22100

Bulk Loading and Reading

First configure the bulk loader and log directories in the datastore editor, then enable and configure
bulk loading in the target table editor:
1. In the Netezza datastore editor, click Advanced.
2. Click in the field to the right of Bulk loader directory and type the directory path or click Browse

to where the software should write SQL and data files for bulk loading.
3. In the FTP category, enter the FTP host name, login user name, login password, and host working

directory.

These options are used to transfer the Netezza nzlog and nzbad files.

Note:
If this datastore is not being used specifically for Netezza bulk loading, the software ignores any
FTP option entries.

4. If you are loading non-ASCII character data, set the Code page to latin-9.

If you are loading mulitbyte data, set the Code page to utf-8.

5. Click OK or Apply.
6. Open the data flow and open the target table editor by clicking its name.
7. On theBulk Loader Options tab, select a bulk-loading method and configure the remaining options

there and on the Options tab.
8. Save the data flow.

Related Topics
• Reference Guide: Objects, Database datastores (ODBC)
• Designer Guide: Datastores, Defining a database datastore

9.5.4 Netezza log files

When writing from the external table to the staging table, Netezza generates logs (nzlog and nzbad
files) and writes them to a database server working directory. You can use these logs to troubleshoot
your jobs. (If you do not enter a Database server working directory in the datastore editor, Netezza
uses the temp directory on its server, /tmp, to store the nzlog and nzbad files.)

For SAP BusinessObjects Data Services to access and manage these logs, configure the FTP parameters
in the datastore editor. After a load, trhe software copies these files from the specified NetezzaDatabase
server working directory to the specified Bulk loader directory and deletes them from the Netezza
server.

For successful loads, SAP BusinessObjects Data Services then deletes these log files from the Bulk
loader directory (assuming the Clean up bulk loader directory after load option is checked in the
target table editor).

2012-11-22101

Bulk Loading and Reading

For failed loads, the software does not delete the log files from the Bulk loader directory even if the
Clean up bulk loader directory after load option is checked in the target table editor.

9.6 Bulk loading in Oracle

SAP BusinessObjects Data Services supports Oracle bulk loading.

9.6.1 Bulk-loading methods

You can bulk load to Oracle using an API or a staging file:
• If you select the API method, SAP BusinessObjects Data Services accesses the direct path engine

of Oracle's database server associated with the target table and connected to the target database.
Using Oracle's Direct-Path Load API, input data feeds directly into database files. To use this option,
you must have Oracle version 8.1 or later.

• If you select the File method, Data Services writes an intermediate staging file, control file, and log
files to the local disk and invokes the Oracle SQL*Loader. This method requires more processing
time than the API method.

For detailed information about the Oracle SQL*Loader options, see the relevant Oracle product
documentation.

9.6.2 Bulk-loading modes

Bulk loading in Oracle supports two modes of data loading: conventional-path and direct-path.
Conventional-path loading is implicit for the File option if you do not select Direct-path on the Bulk
LoaderOptions tab in the target table editor. SAP BusinessObjects Data Services always uses
direct-path loading for the API option.
• Conventional-path loading

Conventional-path loads use the SQL INSERT statements to load data to tables.

• Direct-path loading

Direct-path loads use multiple buffers for a number of formatted blocks that load data directly to
database files associated with tables.

2012-11-22102

Bulk Loading and Reading

9.6.3 Bulk-loading parallel-execution options

Parallel-execution options for bulk loading are on the Options tab.

For the API method, you can choose to select the Enable partitioning check box. If selected, SAP
BusinessObjects Data Services generates the number of target parallel instances based on the number
of partitions in the target table. If not selected or if your table target is not partitioned, Data Services
uses one loader by default.

For the File method, enter a value in the Number of loaders box or select the Enable partitioning
check box.

Note:
The Enable partitioning check box does not appear on the Options tab if the target table is not
partitioned.

9.6.4 Bulk-loading scenarios

With two bulk-loading methods, two load modes, and two parallel load options, there are several
scenarios you can configure:

Parallel Load OptionsLoad ModeMethodScenario

Enable partitions is not
selected (One loader is
used by default)

Direct-pathAPI1

Enable partitions is se-
lectedDirect-pathAPI2

Number of loaders = 1Direct-pathFile3

Number of loaders > 1Direct-pathFile4

Enable partitions is se-
lectedDirect-pathFile5

Number of loaders = 1ConventionalFile6

2012-11-22103

Bulk Loading and Reading

Parallel Load OptionsLoad ModeMethodScenario

Number of loaders > 1ConventionalFile7

Enable partitions is se-
lectedConventionalFile8

Here are some tips for using these scenarios:
• The API method always uses the direct-path load type, and when it is used with a partitioned target

table, SAP BusinessObjects Data Services processes loads in parallel. The software instantiates
multiple loaders based on the number of partitions in a table. Each loader receives rows that meet
the conditions specified by the partition.

• With the File method, direct-path is faster than conventional load, but the File method is slower than
using an API because of the need to generate a staging file, logs, and invoke Oracle's SQL*Loader.

• With the File method, when you use a value of greater than one for either the Number of Loaders
or the Enable partitioning option, loads cannot truly run in parallel. The creation of a staging file
and log for each loader is serialized.

9.6.5 Using bulk-loading options

As seen in the table on the previous page, there are many ways to set up bulk loading for an Oracle
database. The following sections describe two scenarios in detail.

9.6.5.1 Direct-path loads using Number of Loaders and File method

In the Options tab of the target table editor, when you enter a value for Number of loaders, SAP
BusinessObjects Data Services instantiates multiple loaders. Each loader receives rows equal to the
amount specified in the Rows per commit box on the Bulk Loader Options tab. The loaders pipe
rows to a staging file, then call the SQL*Loader to load the staging file contents into the table.

This process occurs in "round-robin" fashion. For example, if you set Rows per commit to 5000 and
Number of loaders to 2, then the first loader receives 5000 rows, writes them to the staging file, and
then invokes the SQL*Loader to load the data into the table.

Meanwhile, the second loader receives the second batch of 5000 rows, writes them to a staging file,
and then waits for the first loader to complete the loading. When the first loader completes the bulk
load, the second loader starts, and while the second loader is loading, the first loader receives the third
batch of 5000 rows. This process continues until all the data loads.

2012-11-22104

Bulk Loading and Reading

The SQL*Loader uses a control file to read staging files and load data. The software either creates this
control file at runtime or uses one that is specified on the Bulk Loader Options tab at design time.

For parallel loading, the generated control files, data files, and log files are named as follows:

TableNameTIDPID_LDNUM_BATCHNUM

Where:

TableName: The name of the table into which data loads.

TID : The thread ID.

PID : The process ID.

LDNUM : The loader number, which ranges from 0 to number of loaders minus 1. For single loaders,
LDNUM is always 0.

BATCHNUM : The batch number the loader is processing. For single loaders the BATCHNUM is always
0.

Note:
Product performance during this type of parallel loading depends on a number of factors such as
distribution of incoming data and underlying DBMS capabilities. Under some circumstances it is possible
that specifying parallel loaders can be detrimental to performance. Always test the parallel loading
process before moving to production.

9.6.5.2 Direct-path loads using partitioned tables and API method

You can import partitioned tables as SAP BusinessObjects Data Services metadata.

In the Options tab of the target table editor, when you select Enable partitioning, the software
instantiates multiple loaders based on the number of partitions in a table. Each loader receives rows
that meet the conditions specified by the partition. In addition, commits occur based on the number
specified in the Rows per commit box on the Bulk Loader Options tab.

For example:
• If you Rows per commit to 5000, the number of partitions is set 2, and your first partition includes

2500 rows, then the first loader commits after receiving all possible rows (2500) while concurrently
processing the second loader.

• If you Rows per commit to 5000, the number of partitions is set 2, and your first partition includes
10,000 rows, then the first loader commits twice. Once after receiving 5000 rows and again after
receiving the second batch of 5000 rows. Meanwhile, the second loader is processing its rows.

The loaders pipe rows directly to Oracle database files by using Oracle direct-path load APIs (installed
with the Oracle client) that are associated with the target database.

2012-11-22105

Bulk Loading and Reading

The API method allows the software to bypass the use of the SQL* Loader (and the control and staging
files it needs). In addition, by using table partitioning, bulk loaders can pass data to different partitions
in the same target table at the same time. Using the API method with partitioned tables fully optimizes
performance.

Note:
If you plan to use a partitioned table as a target, the physical table partitions in the database must match
the metadata table partitions in SAP BusinessObjects Data Services. If there is a mismatch, Data
Services will not use the partition name to load partitions, which impacts processing time.

For the API method, the software records and displays error and trace logs as it does for any job. A
monitor log records connection activity between components; however, it does not record activity while
the API is handling the data.

9.7 Bulk loading in SAP HANA

SAP BusinessObjects Data Services supports bulk loading to the SAP HANA database.

For improved performance when using changed-data capture or auto correct load, Data Services uses
a temporary staging table to load the target table. Data Services first loads the data to the staging table,
then it applies the operation codes (INSERT, UPDATE, and DELETE) to update the target table. With
the Bulk load option selected in the target table editor, any one of the following conditions triggers the
staging mechanism:
• The data flow contains a Map_CDC_Operation transform
• The data flow contains a Map_Operation transform that outputs UPDATE or DELETE rows
• The data flow contains a Table_Comparison transform
• The Auto correct load option in the target table editor is set to Yes

If none of these conditions are met, that means the input data contains only INSERT rows. Therefore
Data Services does only a bulk insert operation, which does not require a staging table or the need to
execute any additional SQL.

By default, Data Services automatically detects the SAP HANA target table type and updates the table
accordingly for optimal performance.

Because the bulk loader for SAP HANA is scalable and supports UPDATE and DELETE operations,
the following options (target table editorOptions > Advanced > Update control) are also available for
bulk loading:
• Use input keys
• Auto correct load

9.8 Bulk loading in Sybase ASE

2012-11-22106

Bulk Loading and Reading

SAP BusinessObjects Data Services supports bulk loading of Sybase ASE databases through the
Sybase ASE bulk copy utility. For detailed information about the Sybase ASE bulk loader options and
their behavior in the Sybase ASE DBMS environment, see the relevant Sybase ASE product
documentation.

9.9 Bulk loading in Sybase IQ

SAP BusinessObjects Data Services supports bulk loading to Sybase IQ databases via the Sybase IQ
LOAD TABLE SQL command. For detailed information about the Sybase IQ LOAD TABLE parameters
and their behavior in the Sybase IQ database environment, see the relevant Sybase IQ product
documentation.

For improved performance when using changed-data capture or auto correct load, Data Services uses
a termporary staging table to load the target table. Data Services first loads the data to the staging
table, then it applies the operation codes (INSERT, UPDATE, and DELETE) to update the target table.
With the Bulk load option selected in the target table editor, any one of the following conditions triggers
the staging mechanism:
• The data flow contains a Map_CDC_Operation transform
• The data flow contains a Map_Operation transform that outputs UPDATE or DELETE rows
• The Auto correct load option in the target table editor is set to Yes

If none of these conditions are met, that means the input data contains only INSERT rows. Therefore,
Data Services does only a bulk INSERT operation, which does not require a staging table or the need
to execute any additional SQL.

Note that because the bulk loader for Sybase IQ also supports UPDATE and DELETE operations, the
following options (target table editor Options > Advanced > Update control) are also available for
bulk loading:
• Use input keys
• Auto correct load

9.9.1 Configuring bulk loading for Sybase IQ

First configure the bulk loader and log directories in the datastore editor, then enable and configure
bulk loading in the target table editor:
1. In the Sybase IQ datastore editor, click Advanced.
2. Click in the field next toBulk loader directory and type the directory path or clickBrowse to navigate

to where Data Services should write command and data files for bulk loading.
3. Depending on the version of Sybase IQ to which this datastore connects, configure "Bulk Loader"

and/or "FTP" options.

2012-11-22107

Bulk Loading and Reading

4. Click OK or Apply.
5. Open the data flow and open the target table editor by clicking its name.
6. On theBulk Loader Options tab, select a bulk-loading method and configure the remaining options

there and on the Options tab.
7. Save the data flow.

9.9.2 Sybase IQ log files

After a job executes, Data Services stores the Sybase IQ message and row logs in the Bulk loader
directory specified in the datastore editor (regardless of the setting for the JS and DB on samemachine
option). A data file will also be present if you do not use the named pipe option. If you do not specify a
Bulk loader directory, Data Services by default writes the files to the directory <DS_COM
MON_DIR>\log\bulkloader.

The logs include:
• message log—Records constraint violations specified in the Error handling section of the target

table Bulk Loader Options tab.
• row log—Contains the data from the violating row. The data in the row log is delimited by the Field

delimiter character specified on the Bulk Loader Options tab.

If you select Clean up bulk loader directory after load, Data Services deletes the data file and log
files after loading completes. If you choose not to clean up the bulk loader directory or if your job results
in errors captured in the logs, the software does not delete the data file and log files.

9.10 Bulk loading and reading in Teradata

SAP BusinessObjects Data Services supports the following bulk loading and reading tools:
• Parallel Transporter
• FastLoad
• MultiLoad
• TPump
• Load Utility
• None (use ODBC)

Note:
If your Job Server is on a UNIX platform, to take advantage of bulk loading on Teradata 13 databases
you must set the required environment parameters in the file $LINK_DIR/bin/td_env.config. Instructions
are documented inside the file.

For detailed information about Teradata options and their behavior in the Teradata environment, see
the relevant Teradata product documentation.

2012-11-22108

Bulk Loading and Reading

9.10.1 Bulk loader file options

For all bulk loader methods, you can use staging data files or named pipes. These File option types
are on the Bulk Loader Options tab of the target table editor. This section describes how each file
option works.

9.10.1.1 Data file

The Data file option loads a large volume of data by writing to a data file that it passes to the Teradata
server. SAP BusinessObjects Data Services runs bulk-loading jobs using a staging data file as follows:
1. It generates staging data file(s) containing data to be loaded into a Teradata table.
2. It generates a loading script to be used by Teradata Parallel Transporter. The script defines read

and load operators.
3. If you use Teradata Parallel Transporter, the read operator reads the staging data file, then passes

the data to the load operator, which loads data into the Teradata table.

9.10.1.2 Generic named pipe

The Generic named pipe file option loads a large volume of data by writing to a pipe from which
Teradata reads. SAP BusinessObjects Data Services runs bulk-loading jobs using a generic named
pipe as follows:
1. It generates a script that Teradata Parallel Transporter uses to load the database.
2. It creates a pipe to contain the data to load into a Teradata table.

On UNIX, the pipe is a FIFO (first in, first out) file that has a name of this format:

/temp/filename.dat

On Windows, the name has this format:

\\.\pipe\datastorename_ownername_tablename_loadernum.dat

3. It executes the loading script. If you use Teradata Parallel Transporter, the script starts Teradata
Parallel Transporter and defines read and load operators.

4. It writes data to the pipes.
5. Teradata Parallel Transporter connects to the pipes. Then the read operator reads the named pipe

and passes the data to the load operator, which loads the data into the Teradata table.

2012-11-22109

Bulk Loading and Reading

9.10.1.3 Named pipes access module

The Named pipes access module file option loads a large volume of data by writing to a pipe from
which Teradata reads. SAP BusinessObjects Data Services runs bulk-loading jobs using a named pipe
access module as follows:
1. Data Services generates a script that Teradata Parallel Transporter uses to load the database. The

script starts Teradata Parallel Transporter and defines read and load operators.
2. Teradata (Parallel Transporter or non-Parallel Transporter utility) creates named pipes to contain

the data to load into a Teradata table.

On UNIX, the pipe is a FIFO (first in, first out) file that has name of this format:

/temp/filename.dat

On Windows, the name has this format:

\\.\pipe\datastorename_ownername_tablename_loadernum.dat

3. Data Services connects to the pipes and writes data to them.

Note:
When Data Services tries to connect to the pipes, Teradata Parallel Transporter might not have yet
created them. Data Services tries to connect every second for up to 30 seconds. You can increase
the 30-second connection time to up to 100 seconds as follows: In the Designer, select Tools >
Options > Job Server > General and enter the following:

Section: al_engine

Key: NamedPipeWaitTime

Value: nn

(nn is from 30 to 100)

4. The Teradata Parallel Transporter read operator reads the named pipe and passes the data to the
load operator, which loads the data into the Teradata table.

9.10.2 When to use each Teradata bulk-loading method

SAP BusinessObjects Data Services supports multiple bulk-loading methods for Teradata on Windows
and UNIX. The following table lists the methods and file options that you can select, depending on your
requirements.

2012-11-22110

Bulk Loading and Reading

RestrictionsAdvantagesFile OptionBulk loader
method

• The Teradata Server
Tools and Utilities
must be Version 7.0
or later.

• If you use TTU 7.0 or
7.1, see the Release
Notes.

• Can use Data Services par-
allel processing.

• Data Services creates the
loading script.

Data file

Parallel Trans-
porter

• A job that uses a
generic pipe is not
restartable.

• The Teradata Server
Tools and Utilities
must be Version 7.0
or later.

• If you use TTU 7.0 or
7.1, see the Release
Notes.

• Provides a fast way to bulk
load because:
• As soon as Data Ser-

vices writes to a pipe,
Teradata can read from
the pipe.

• Can use Data Services
parallel processing.

• On Windows, no I/O to
an intermediate data file
occurs because a pipe
is in memory

• Data Services creates the
loading script.

Generic named pipe

• The Teradata Server
Tools and Utilities
must be Version 7.0
or later.

• If you use TTU 7.0 or
7.1, see the Release
Notes.

• The job is restartable.
• Provides a fast way to bulk

load because:
• As soon as Data Ser-

vices writes to a pipe,
Teradata can read from
the pipe.

• Can use Data Services
parallel processing.

• On Windows, no I/O to
an intermediate data file
occurs because a pipe
is in memory.

• Data Services creates the
loading script.

Named pipe access module

2012-11-22111

Bulk Loading and Reading

RestrictionsAdvantagesFile OptionBulk loader
method

• User must provide the
loading script.

• Cannot use Data Ser-
vices parallel process-
ing

Load utilities are faster than
INSERT statements through
the ODBC driver.

Data file

Load utility

• User must provide the
loading script.

• Cannot use Data Ser-
vices parallel process-
ing

• A job that uses a
generic pipe is not
restartable.

• Load utilities are faster than
INSERT statements through
the ODBC driver.

• Named pipes are faster
than data files because:
• As soon as Data Ser-

vices writes to a pipe,
Teradata can read from
the pipe.

• On Windows, no I/O to
an intermediate data file
occurs because a pipe
is in memory.

Generic named pipe

• User must provide the
loading script.

• Cannot use Data Ser-
vices parallel process-
ing.

• Load utilities are faster than
INSERT statements through
the ODBC driver.

• Named pipes should be
faster than data files be-
cause:
• As soon as Data Ser-

vices writes to a pipe,
Teradata can read from
the pipe.

• On Windows, no I/O to
an intermediate data file
occurs because a pipe
is in memory

• The job is restartable.

Named pipes access module

2012-11-22112

Bulk Loading and Reading

RestrictionsAdvantagesFile OptionBulk loader
method

Cannot use Data Ser-
vices parallel processing

Load utilities are faster than
INSERT or UPSERT state-
ments through the ODBC driv-
er. Data Services creates the
loading script.

Data file

FastLoad, Multi-
Load, and
TPump

• Cannot use Data Ser-
vices parallel process-
ing

• A job that uses a
generic pipe is not
restartable.

• Load utilities are faster than
INSERT or UPSERT state-
ments through the ODBC
driver.

• Named pipes are faster
than data files because:
• As soon as Data Ser-

vices writes to a pipe,
Teradata can read from
the pipe.

• On Windows, no I/O to
an intermediate data file
occurs because a pipe
is in memory.

• Data Services creates the
loading script.

Generic named pipe

Cannot use Data Ser-
vices parallel processing.

• Load utilities are faster than
INSERT or UPSERT state-
ments through the ODBC
driver.

• Named pipes should be
faster than data files be-
cause:
• As soon as Data Ser-

vices writes to a pipe,
Teradata can read from
the pipe.

• On Windows, no I/O to
an intermediate data file
occurs because a pipe
is in memory.

• The job is restartable.
• Data Services creates the

loading script.

Named pipes access module

2012-11-22113

Bulk Loading and Reading

RestrictionsAdvantagesFile OptionBulk loader
method

This method does not
bulk-load data.

INSERT statements through
the ODBC driver are simpler to
use than a data file or pipe.

Uses Teradata ODBC driver
to send separate SQL IN-
SERT statements to load da-
ta.

None (use
ODBC)

9.10.3 Parallel Transporter method

SAP BusinessObjects Data Services supports Teradata's Parallel Transporter, an ETL tool that
consolidates bulk-loading utilities into a single interface.

When you use the Parallel Transporter method, you can leverage Data Services' powerful parallel
processing capabilities to specify a number of source and target options including the number of files
or pipes for the software to use when processing large quantities of data.

9.10.3.1 Source performance tuning

Teradata source options are on the Teradata options tab in the source table editor. Here you can
select the reading mode plus a number of advanced options.

You can tune the following options in the Teradata source editor to improve performance:
• Maximum number of sessions: For large volumes of data, more sessions allows Data Services

to read more data parallel. Ideally this number should equal the number of AMPs.
• Number of export operator instances: When reading data in parallel, it can be consumed by

multiple export instances for better performance. Ideally this value should equal the number of CPUs.
• Parallel process threads: These internal threads break buffered data into rows and columns, which

can improve performance by maximizing CPU usage on the Job Server computer. Ideally this number
should equal the number of CPUs.

9.10.3.1.1 Special considerations

Be aware of the following limitations when using the Teradata Parallel Transporter.
• It is not always possible to use the Parallel Transporter method to read from a source. In certain

situations, Teradata does not support certain SQL constructs and you must use the ODBC method
instead. In the following scenarios, Data Services will automatically switch the source mode to ODBC
regardless of the actual mode selected on the Teradata options tab in the source editor:

2012-11-22114

Bulk Loading and Reading

• The WHERE clause of a Query contains <primary key>=<value> predicate(s). Such a primary
key can be a single column or a composite key.

• The input schema contains columns of the LOB (CLOB or BLOB) data type.
• Unique secondary index columns are not allowed in the WHERE clause of a Query. However,

because Data Services does not have the information as to whether a WHERE clause predicate is
part of a unique secondary index, the WHERE clause gets pushed down to the Parallel Transporter
reader. In this situation, a run-time error will occur, and you can manually set the source mode to
None (ODBC).

• Database functions that are pushed down for ODBC readers are also pushed down for Parallel
Transporter except for the functions Year and Month.

• Parallel Transporter does not accept parameterized SQL. As a result of this restriction, if a Teradata
table is the inner loop of a join, the table will always be cached.

• Readers generated from Table Comparison transform and Lookup function families do not use
Parallel Transporter.

• When multiple Teradata readers are optimized by Data Services by collapsing into one, Data Services
uses Parallel Transporter whenever possible. When not possible, ODBC is used instead.

9.10.3.2 Target performance tuning

SAP BusinessObjects Data Services provides the option for parallel processing when you bulk load
data using the Parallel Transporter method.

In the target table editor using a combination of choices from the Options and Bulk Loader Options
tabs, you can specify the number of data files or named pipes as well as the number of read and load
Operator Instances. The Number of Loaders option distributes the workload while the Operators
perform parallel processing.

In the target table Options tab, specify the Number of Loaders to control the number of data files or
named pipes that Data Services or Parallel Transporter generates. Data Services writes data to these
files in batches of 999 rows. For example, if you set Number of Loaders to 2, the software would
generate two data files, writing 999 rows to the first file, then writing the next 999 rows to the second
file. If there are more rows to process, the software continues, writing to the first file again, then the
second, and so forth.

On the Bulk Loader Options tab, specify the number of instances in the loading scripts. If you set
Number of DataConnector instances to 2 and Number of instances to 2, Parallel Transporter will
assign the first read operator instance to read one data file and the other instance to read another data
file in parallel. The DataConnector (read operator) instances then pass the data to the load operator
instances for parallel loading into Teradata.

The Parallel Transporter uses a control file to read staging files or pipes and load data.

Note:
Performance uaing this type of parallel loading depends on a number of factors such as distribution of
incoming data and underlying DBMS capabilities. Under some circumstances, it is possible that specifying

2012-11-22115

Bulk Loading and Reading

parallel loaders can be detrimental to performance. Always test the parallel loading process before
moving to production.

9.10.3.2.1 To configure the bulk loader for parallel processing
1. On the target table Options tab, specify the Number of loaders to control the number of data files

or named pipes. Data Services will write data to these files in batches of 999 rows.
2. On the Bulk Loader Options tab, for "Bulk loader" choose Parallel Transporter.
3. For File Option, choose the type of file (Data file, Generic named pipe, or Named pipes access

module) to contain the data to bulk load.
4. If you chose Data file or Generic named pipe in File Option, specify the number of read and load

instances in the loading scripts.
If you set Number of instances to 2 (load operators) and Number of DataConnector instances
to 2 (read operators), Parallel Transporter will assign the first read operator instance to read one
data file and the other instance to read another data file in parallel. The read operator instances
then pass the data to the load operator instances for parallel loading into Teradata.

Note:
If you chose Data file, the value you specify for DataConnector instances (read operators) should
be less than or equal to the number of data files.

5. If you chose Named pipes access module for File Option, specify Number of instances (load
operators) in the loading scripts.
Teradata uses the value you specify inNumber of loaders to determine the number of read operator
instances, as well as the number of named pipes. The DataConnector instances is not applicable
when you use Named Pipes Access Module.

For example, if you set Number of loaders to 2, Parallel Transporter generates two named pipes
and assigns one read operator instance to read from one pipe and the other instance to read the
other pipe in parallel. If you set Number of instances to 2 (load operators), the read operator
instances pass the data to the load operator instances for parallel loading into Teradata.

6. If you specified Named pipes access module for File Option, you can override the default settings
for the following Teradata Access Module parameters: Log directory, Log level, Block size, Fallback
file name, Fallback directory, Signature checking.
The Teradata Access Module creates a log file to record the load status and writes information to
fallback data files. If the job fails, the Teradata Access Module uses the fallback data files to restart
the load. The Access Module log file differs from the build log that you specify in the Log directory
option in the Teradata datastore.

Note:
Data Services sets the bulk loader directory as the default value for both Log Directory and Fallback
Directory.

For more information about these parameters, see the relevant Teradata tools and utilities
documentation.

Related Topics
• Reference Guide: Objects, Teradata target table options

2012-11-22116

Bulk Loading and Reading

9.10.4 Teradata standalone utilities

In addition to the Parallel Transporter interface, SAP BusinessObjects Data Services supports several
Teradata utilities that load to and extract from the Teradata database. Each load utility is a separate
executable designed to move data into a Teradata database. Choose from the following bulk loader
utilities:

DescriptionUtility

Loads unpopulated tables only. Both the client and server environments support
FastLoad. Provides a high-performance load (inserts only) to one empty table
each session.

FastLoad

Loads large quantities of data into populated tables. MultiLoad also supports bulk
inserts, updates, upserts, and deletions against populated tables.MultiLoad

Uses standard SQL/DML to maintain data in tables. It also contains a method that
you can use to specify the percentage of system resources necessary for opera-
tions on tables. Allows background maintenance for insert, update, upsert, and
delete operations to take place at any time you specify. Used with small data vol-
umes.

TPump

Invokes one of the above utilities (MultiLoad, FastLoad, or TPump) with the inter-
face prior to Data Services version 11.5.1.Load Utility

9.10.4.1 FastLoad

This procedure describes how to bulk load a table using the Teradata FastLoad utility.
1. Ensure that your Teradata datastore specifies a value in TdpId (Teradata Director Program Identifier).

This option identifies the name of the Teradata database to load and is mandatory for bulk loading.
2. In the Bulk Loader Options tab of the target table editor, choose FastLoad in the Bulk loader

drop-down list.
3. For File option, choose the type of file (Data file, Generic named pipe, or Named pipes access

module) to contain the data to bulk load.
4. You can specify the following FastLoad parameters:

2012-11-22117

Bulk Loading and Reading

DescriptionFastLoad parameter

Encrypt data and requests in all sessions used by the job. The default
is not to encrypt all sessions.Data encryption

Prints every request sent to the Teradata database. The default is not
to reduce print output.Print all requests

Number of kilobytes for the output buffer that FastLoad uses for mes-
sages to the Teradata database. The default is 63 kilobytes which is
also the maximum size.

Buffer size

Particular mapping between characters and byte strings (such as ASCII
or UTF-8).Character set

For more information about these parameters, see the Teradata FastLoad Reference.

5. In Attributes, you can usually use the default settings for the following attributes in the FastLoad
script that SAP BusinessObjects Data Services generates.

DescriptionScript attribute

Identifier, of up to 30 characters, associated with the user name that will
logon to the Teradata database.AccountId

The number of rows sent to the Teradata database between checkpoint
operations. The default is not to checkpoint.CheckpointRate

Maximum number of rejected records that Teradata can write to the error
table 1 while inserting into a FastLoad table.ErrorLimit

FastLoad uses this table to store records that were rejected for errors
other than unique primary index or duplicate row violation.ErrorTable1

FastLoad uses this table to store records that violated the unique primary
index constraint.ErrorTable2

Maximum number of FastLoad sessions for the load job.MaxSessions

Minimum number of FastLoad sessions required for the load job to con-
tinue.MinSessions

Number of hours that the FastLoad utility continues trying to logon when
the maximum number of load jobs are already running on the Teradata
database.

TenacityHours

Number of minutes that the FastLoad utility waits before it retries a logon
operation. The default is six minutes.TenacitySleep

2012-11-22118

Bulk Loading and Reading

Note:
By default, Data Services uses the bulk loader directory to store the script, data, error, log, and
command (bat) files.

For more information about these parameters, see the Teradata FastLoad Reference.

6. If you specified Data file for File Option, you can increase the Number of loaders on the Options
tab, which increases the number of data files. The software can use parallel processing to write data
to multiple data files in batches of 999 rows.

If you specified Generic named pipe or Named pipes access module, Data Services supports
only one loader and disables the Number of loaders option.

9.10.4.2 MultiLoad

This procedure describes how to bulk load a table using the Teradata MultiLoad utility.
1. Ensure that your Teradata datastore specifies a value in TdpId (Teradata Director Program Identifier).

This option identifies the name of the Teradata database to load and is mandatory for bulk loading.
2. In the Bulk Loader Options tab of your target table editor, choose MultiLoad in the Bulk loader

drop-down list.
3. In File Option, choose the type of file (Data File, Generic named pipe, or Named pipes access

module) to contain the data to bulk load. The default is Data File.
4. You can specify the following MultiLoad parameters:

Short descriptionMultiLoad parameter

The default is not to reduce print output.Reduced print output

The default is not to encrypt all sessions.Data Encryption

Particular mapping between characters and byte strings (such
as ASCII or UTF-8).Character set

For more information about these parameters, see the Teradata MultiLoad Reference.

5. In Attributes, you can usually use the default settings for the following attributes in the MultiLoad
script that SAP BusinessObjects Data Services generates.

Short descriptionScript attribute

Table in which Teradata stores the load job status. Specify the restart log table
that will maintain the checkpoint information for your MultiLoad job.LogTable

Identifier, of up to 30 characters, associated with the user name that will logon to
the Teradata database.AccountId

2012-11-22119

Bulk Loading and Reading

Short descriptionScript attribute

Teradata uses this table to stage input data.WorkTable

Teradata uses this table to store errors that it detects during the acquisition phase
of the MultiLoad import task.ErrorTable1

Teradata uses this table to store errors that it detects during the application phase
of the MultiLoad import task.ErrorTable2

Maximum number of rejected records that Teradata can write to the error table 1
during the acquisition phase of the MultiLoad import task. If used with ErrorPercent-
age, ErrorLimit specifies the number of records that must be sent to the Teradata
database before ErrorPercentage takes effect.

ErrorLimit

Approximate percentage (expressed as an integer) of total records sent so far
(ErrorLimit) to the Teradata database that the acquisition phase might reject.ErrorPercentage

Interval between checkpoint operations during the acquisition phase. Express this
value as either:
• The number of rows read from your client system or sent to the Teradata

database
• An amount of time in minutes

CheckpointRate

Maximum number of MultiLoad sessions for the load job.MaxSessions

Minimum number of MultiLoad sessions required for the load job to continue.MinSessions

Number of hours that the MultiLoad utility continues trying to logon when the
maximum number of load jobs are already running on the Teradata database.TenacityHours

Number of minutes that the MultiLoad utility waits before it retries a logon operation.
The default is six minutes.TenacitySleep

Number of hours that MultiLoad continues trying to start when one of the target
tables is being loaded by some other job.TableWait

Specifies how MultiLoad should respond when an Access Module Processor (AMP)
is down.AmpCheck

Select IgnoreDuplicate to not place duplicate rows in error table 2. The default is
to load the duplicate rows.IgnoreDuplicate

Note:
By default, Data Services uses the bulk loader directory to store the script, data, error, log, and
command (bat) files.

For more information about these parameters, see the Teradata MultiLoad Reference.

6. If you specified Data file in File Option, you can increase the Number of loaders in the Options
tab which increase the number of data files. Data Services can use parallel processing to write data
to multiple data files in batches of 999 rows.

2012-11-22120

Bulk Loading and Reading

If you specified Generic named pipe or Named pipes access module, Data Services supports
only one loader and disables the Number of loaders option.

Related Topics
• Reference Guide: Objects, Target tables (Teradata target table options)

9.10.4.3 TPump

This procedure describes how to bulk load a table using the Teradata TPump utility.
1. Ensure that your Teradata datastore specifies a value in TdpId (Teradata Director Program Identifier).

This option identifies the name of the Teradata database to load and is mandatory for bulk loading.
2. On the Bulk Loader Options tab of the target table editor, choose TPump in the Bulk loader

drop-down list.
3. For File Option, choose the type of file (Data file, Generic named pipe, or Named pipes access

module) to contain the data to bulk load.
4. You can specify the following TPump parameters:

Short descriptionFastLoad parameter

Reduce the print output of TPump to the minimal information required to
determine the success of the job. The default is not to reduce print output.Reduced print output

Keep macros that were created during the job run. You can use these macros
as predefined macros for subsequent runs of the same job.Retain Macros

Encrypt data and requests in all sessions used by the job. The default is not
to encrypt all sessions.Data Encryption

Number of request buffers that TPump uses for SQL statements to maintain
the Teradata database.Number of buffers

Particular mapping between characters and byte strings (such as ASCII or
UTF-8).Character set

Configuration file for the TPump job.Configuration file

Controls the rate at which TPump transfers SQL statements to the Teradata
database. Value can be between 1 and 600, which specifies the number of
periods per minute. The default value is 4 15-second periods per minute.

Periodicity value

Turns on verbose mode which provides additional statistical data in addition
to the regular statistics.Print all requests

For more information about these parameters, see the Teradata Parallel Data Pump Reference.

2012-11-22121

Bulk Loading and Reading

5. In Attributes, you specify Data Services parameters that correspond to Teradata parameters in
TPump commands. You can usually use the default settings for the following parameters in the
TPump script that the software generates.

DescriptionData Services parameter
in Attributes paneTPump command

Identifier, of up to 30 characters, associated with the user
name that will logon to the Teradata database.AccountIdNAME

Use the error table specified in ErrorTable. If the table
does not exist, TPump creates it. If the structure of the
existing error table is not compatible with the error table
TPump creates, the job will run into an error when TPump
tries to insert or update the error table.

AppendBEGIN LOAD

Number of minutes between checkpoint operations. Value
must be an unsigned integer from 0 through 60, inclusive.

The default is to checkpoint every 15 minutes.
CheckpointRateBEGIN LOAD

Maximum number of rejected records that TPump can
write to the error table while maintaining a table. The de-
fault is no limit.

If you specify ErrorPercentage , ErrorLimit specifies the
number of records that must be sent to the Teradata
database beforeErrorPercentage takes effect. For exam-
ple, if ErrorLimit is 100 and ErrorPercentage is 5, 100
records must be sent to the Teradata database before the
approximate 5% rejection limit is applied. If only 5 records
were rejected when the 100th record is sent, the limit is
not exceeded. However, if six records were rejected when
the 100th record is sent, TPump stops processing because
the limit is exceeded.

ErrorLimitBEGIN LOAD

Integer value that represents the approximate percent of
the total number of records sent to the Teradata Database
that might be rejected during the TPump task. You cannot
specify this parameter without ErrorLimit.

ErrorPercentageBEGIN LOAD

Name of the table in which TPump stores information
about errors and the rejected records.ErrorTableBEGIN LOAD

Name of macro to execute. Using predefined macros
saves time because TPump does not need to create and
drop new macros each time you run a TPump job script.

ExecuteMacroEXECUTE

Select Ignore duplicate inserts to not place duplicate
rows in the error table.Ignore duplicate insertsDML LABEL

2012-11-22122

Bulk Loading and Reading

DescriptionData Services parameter
in Attributes paneTPump command

Character string that identifies the name of a job. The
maximum length is 16 characters.JobNameNAME

Number of seconds that the oldest record resides in the
buffer before TPump flushes it to the Teradata database.
Value cannot be less than one second.

If the SerializeOn is not specified, only the current buffer
can possibly be stale. If you specify SerializeOn, the
number of stale buffers can range from zero to the number
of sessions.

LatencyBEGIN LOAD

Name of the table to use to write checkpoint information
that is required for the safe and automatic restart of a
TPump job.

The default name has the following format:

owner.table_LT

LogTableOther TPump com-
mands

Name of database to contain any macros TPump uses or
builds. The default is to place macros in the same
database that contains the TPump target table.

MacroDatabaseBEGIN LOAD

Maximum number of sessions for TPump to use to update
the Teradata database. SAP BusinessObjects Data Ser-
vices uses a default of 3.

MaxSessionsBEGIN LOAD

Minimum number of sessions for TPump to use to update
the Teradata database.MinSessionsBEGIN LOAD

Do not drop the error table, even if it is empty, at the end
of a job. You can use NoDrop with Append to persist the
error table, or you can use it alone.

NoDropBEGIN LOAD

Prevents TPump from checking for statement rate changes
from, or update status information for, the TPump Monitor.NoMonitorBEGIN LOAD

Prevents TPump from terminating because of an error
associated with a variable-length record.NoStopIMPORT INFILE

Number of SQL statements to pack into a multiple-state-
ment request. The default is 20 statements per request.
The maximum value is 600.

PackBEGIN LOAD

Select PackMaximum to have TPump dynamically deter-
mine the number of records to pack within one request.
The maximum value is 600.

PackMaximumBEGIN LOAD

2012-11-22123

Bulk Loading and Reading

DescriptionData Services parameter
in Attributes paneTPump command

Initial maximum rate at which TPump sends SQL state-
ments to the Teradata database. Value must be a positive
integer. If unspecified, Rate is unlimited.

RateBEGIN LOAD

Specifies whether or not to use robust restart logic. Value
can be YES or NO.
• NO specifies simple restart logic, which cause TPump

to begin where the last checkpoint occurred in the job.
TPump redoes any processing that occurred after the
checkpoint.

• YES specifies robust restart logic, which you would
use for DML statements that change the results when
you repeat the operation. Examples of such statements
include the following:

INSERTs into tables which allow duplicate rows

UPDATE foo SET A=A+1...

RobustBEGIN LOAD

Specify a comma separated list of columns to use as the
key for rows and guarantee that operations on these rows
occur serially.

SerializeOnBEGIN LOAD

Number of hours that the utility tries to log on sessions
required to perform the TPump job. The default is four
hours.

TenacityHoursBEGIN LOAD

Number of minutes that TPump waits before it retries a
logon operation. The default is six minutes.TenacitySleepBEGIN LOAD

Note:
By default, SAP BusinessObjects Data Services uses the bulk loader directory to store the script,
data, error, log, and command (bat) files.

For more information about these parameters, see the Teradata Parallel Data Pump Reference.

6. If you specified Data file in File Option, you can increase the Number of loaders in the Options
tab which increase the number of data files. The software can use parallel processing to write data
to multiple data files in batches of 999 rows.

If you specified Generic named pipe or Named pipe access module, Data Services supports only
one loader and disables the Number of loaders option.

2012-11-22124

Bulk Loading and Reading

9.10.4.4 Load Utility

To bulk load a Teradata table using the Load Utility:
1. On the Bulk Loader Options tab of your target table editor, choose Load in the Bulk loader

drop-down list.
2. For File Option, choose the type of file (Data File, Generic named pipe, or Named pipes access

module) to contain the data to bulk load.
3. Enter a command to be invoked by Data Services in the "Command line" text box. For example,

fastload<C:\tera_script\float.ctl.
4. If you chose Data file for File Option, enter (or browse to) the directory path where you want the

software to place your data file.
5. If you chose Generic named pipe or Named pipes access module for File Option, enter the pipe

name.

9.10.5 Using the UPSERT bulk-loading operation

The purpose of the Teradata UPSERT operation is to update a row, but if no row matches the update,
the row is inserted.

In SAP BusinessObjects Data Services, you can only use the Teradata UPSERT operation with the
following Bulk loader methods:
• MultiLoad
• TPump
• Parallel Transporter

The UPSERT operation is available only with the following Operators:
• Stream
• Update

In Data Services, you enable UPSERT on the target table editor's Bulk Loader Options tab. In the
Data Services options section, for Bulk Operation, select Upsert (the default is Insert).

The additional Attributes available when you select Upsert include:
• Ignoremissing updates: Select whether or not to write the missing update rows into the error table.

The default is yes.
• Ignore duplicate updates: Select whether or not to write an updated duplicate row into the error

table. The default is no.

After selecting Upsert, note that you can also enable the Use input keys option on the target editor's
Options tab.

2012-11-22125

Bulk Loading and Reading

Related Topics
• Reference Guide: Objects, Target tables

9.11 Bulk loading using DataDirect's Wire Protocol SQL Server ODBC driver

Use the DataDirect's Wire Protocol SQL Server ODBC driver bulk load feature to quickly insert and
update a large number of records into a database. You don't need to use a separate database load
utility because the bulk load feature is built into the driver. DataDirect drivers are included in the Data
Services installation.

For more detailed information about the Wire Protocol SQL Server ODBC driver, see the DataDirect
documentation.

Some general considerations when using the bulk load feature:
• Enable the bulk load option only when you want to optimize load performance. Leaving the bulk load

option enabled at all times could lead to undesired results or even corrupt data.
• Do not select the Enable Bulk Load option if any of the following Data Services loader options are

enabled:
• Include in Transaction
• Use Overflow File
• Auto Correct Load
• Load Triggers

• You should create a different DSN and datastore when you are:
• using the same SQL Server database server in different datastores.
• using loaders that have different bulk load options.

9.11.1 Enabling the DataDirect bulk load feature in Windows

To enable the DataDirect bulk load feature for MS SQL Server on Windows, do the following:
1. Open the ODBC Data Source Administrator and go to the Use DSN tab. Click Add.
2. In the "Create New Data Source" window, select the DataDirect SQL Server Wire Protocol driver

and click Finish.
The "ODBC SQL Server Wire Protocol Driver Setup" window opens.

3. Enter driver setup information, such as the name of the data source, the host number, and so on.
4. On the Bulk tab, select the Enable Bulk Loading option.
5. Set the Bulk Options.

2012-11-22126

Bulk Loading and Reading

DescriptionOption

Keeps source identity values.Keep Identity

Checks constraints while data is being inserted into the database.Check Constraints

Keeps null values in the destination table.Keep Nulls

Locks the table while the bulk copy operation is taking place. This option
is checked by default.

Table Lock

Executes a trigger each time a row is being inserted into the database.Fire Triggers

Maximum amount of data that you want exported to the bulk data file.Bulk Binary Threshold
(KB)

Number of rows you want the driver to send to the database at one time.Batch Size

Maximum amount of character data that you want exported to the bulk
data file.

Bulk Character Thresh-
hold (KB)

9.11.2 Enabling the DataDirect bulk load feature in UNIX

To enable the DataDirect bulk load feature for MS SQL Server on UNIX, do the following:
1. Using a text editor, open the odbc.ini file associated with the DSN for which you are bulk loading.
2. Set the EnableBulkLoad option to 1.
3. Enter a BulkLoadOptions value. The value you enter depends on what options you enable.

DescriptionOption

A value of 1 keeps source identity values.Keep Identity

A value of 16 checks constraints while data is being inserted into the database.CheckConstraints

A value of 64 keeps null values in the destination table.Keep Nulls

A value of 2 locks the table while the bulk copy operation is taking place.Table Lock

A value of 32 executes triggers when a row is being inserted into the database.Fire Triggers

Add the option values together and use the total as the BulkLoadOption value. For example, 16
(Check Constraints) + 32 (Fire Triggers) + 1 (Keep Identity) = 49.

BulkLoadOptions=49.

4. Set the BulkLoadBatchSize option. This option sets the number of rows you want the driver to send
to the database at one time. The default value is 1024.

2012-11-22127

Bulk Loading and Reading

Example: odbc.ini file

[ddsql]
Driver=/build/ds41/dataservices/DataDirect/odbc/lib/DAsqls25.so
Description=DataDirect 6.1 SQL Server Wire Protocol
AlternateServers=
AlwaysReportTriggerResults=0
AnsiNPW=1
ApplicationName=
ApplicationUsingThreads=1
AuthenticationMethod=1
BulkBinaryThreshold=32
BulkCharacterThreshold=-1
BulkLoadBatchSize=1024
BulkLoadOptions=2
ConnectionReset=0
ConnectionRetryCount=0
ConnectionRetryDelay=3
Database=ods
EnableBulkLoad=1
EnableQuotedIdentifiers=0
EncryptionMethod=0
FailoverGranularity=0
FailoverMode=0
FailoverPreconnect=0
FetchTSWTZasTimestamp=0
FetchTWFSasTime=1
GSSClient=native
HostName=vantgvmwin470
HostNameInCertificate=
InitializationString=
Language=
LoadBalanceTimeout=0
LoadBalancing=0
LoginTimeout=15
LogonID=
MaxPoolSize=100
MinPoolSize=0
PacketSize=-1
Password=
Pooling=0
PortNumber=1433
QueryTimeout=0
ReportCodePageConversionErrors=0
SnapshotSerializable=0
TrustStore=
TrustStorePassword=
ValidateServerCertificate=1
WorkStationID=
XML Describe Type=-10

2012-11-22128

Bulk Loading and Reading

Other Tuning Techniques

The previous chapters describe the following tuning techniques:
• Maximizing push-down operations

• Using Caches

• Using Parallel Execution

• Distributing Data Flow Execution

• Using Bulk Loading

This section describes other tuning techniques that you can use to adjust performance:
• Source-based performance options

• Join ordering

• Minimizing extracted data

• Using array fetch size

• Target-based performance options
• Loading method

• Rows per commit

• Job design performance options
• Loading only changed data

• Minimizing data type conversion

• Minimizing locale conversion

• Precision in operations

These techniques require that you monitor the change in performance carefully as you make small
adjustments.

10.1 Source-based performance options

2012-11-22129

Other Tuning Techniques

10.1.1 Join ordering

10.1.1.1 Join rank settings

You can use join rank to control the order in which sources are joined. Join rank indicates the rank of
a source relative to other tables and files joined in a data flow. When considering join rank, the Data
Services Optimizer joins sources with higher join ranks before joining sources with lower join ranks.

Join rank must be a non-negative integer. The default value is 0.

Although it is possible to set join rank in the Query editor FROM tab or in a source editor, the best
practice is to specify the join rank directly in the Query editor.

Note:
Join ranks set in sources are not displayed in the Query editor. If a join rank value is specified in the
source, to find the value you must open the source editor.

The Data Services Optimizer gives preference to settings entered in the Query editor over settings
entered in a source editor. If any one input schema has a join rank specified in the Query editor, then
the Data Services Optimizer considers only Query editor join rank settings and ignores all source editor
join rank settings.

Additionally, in a data flow containing multiple adjacent Query transforms, upstream join rank settings
may be considered.

The join rank determination for multiple adjacent Query transforms can be complex because the Data
ServicesOptimizer may combine these Query transforms into a single Query transform.

Consider a case where there is a join T1 inner join T2 in a query, Query_1; and the result of that join
is used in another join in a downstream query, Query_2, as Query_1 inner join T3. The Optimizer would
combine these two inner joins into a new Query, Query_2'.

2012-11-22130

Other Tuning Techniques

Scenario 1
If the join rank values are set as follows:

Join rankTableQuery editor

30T1
Query_1

40T2

10Query_1 result set
Query_2

20T3

The combined query, Query_2', would have the following join rank values:

Join rankTableQuery editor

30T1

Query_2' 40T2

41T3

The join rank value for T3 is adjusted to 41 because in the original Query_2 T3 has a higher join rank
value than the result of T1 join T2 (Query_1 result set).

Scenario 2
In Query_2, if no join rank value is specified, then the default join rank of 0 is applied to both the Query_1
result set and T3. The join rank values are set as follows:

Join rankTableQuery editor

30T1
Query_1

40T2

not set (default=0)Query_1 result set
Query_2

not set (default=0)T3

The combined query, Query_2', would have the following join rank values:

2012-11-22131

Other Tuning Techniques

Join rankTableQuery editor

30T1

Query_2' 40T2

40T3

The join rank value for T3 is adjusted to 40 because in the original Query_2 T3 has the same join rank
value as the result of T1 join T2 (Query_1 result set).

Scenario 3
Assume join ranks are not set in the source tables. In Query_1, if no join rank value is specified, then
the default join rank of 0 is applied to both T1 and T2. Values are set in the Query_2 Query editor as
follows:

Join rankTableQuery editor

not set (default=0)T1
Query_1

not set (default=0)T2

10Query_1 result set
Query_2

20T3

The combined query, Query_2', would have the following join rank values:

Join rankTableQuery editor

10T1

Query_2' 10T2

20T3

Scenario 4
If join rank values are not specified in the Query_1 and Query_2 Query editors, then the combined
query, Query_2', would have no join rank values specified (default=0).

10.1.1.2 Join rank tips

For an inner join between two tables, in the Query editor assign a higher join rank value to the larger
table and, if possible, cache the smaller table.

2012-11-22132

Other Tuning Techniques

For a join between a table and file:
• If the file is small and can be cached, then assign it a lower join rank value and cache it.

• If you cannot cache the file, then assign it a higher join rank value so that it becomes the "outer
table" in the join.

For a join between two files, assign a higher rank value to the larger file and, if possible, cache the
smaller file.

10.1.1.3 About join ordering

The Data Services Optimizer determines the order it joins two or more tables based on the type of join
and, where applicable, join rank. Although the join order has no effect on the actual result produced,
controlling join order can often have a profound effect on the performance of producing the join result.

Join ordering is relevant only in cases where the Data Services engine performs the join. In cases where
the query is pushed down to the database, the database determines how a join is done.

Join order in left outer joins
The result of a left outer join depends on the order of the sources. When considering left outer joins,
the Data Services Optimizer does not change the join order from that specified in the Query editor.
Since join order is not changed, join rank is not considered in the current query. However in a downstream
query that uses the results of the left outer join as one of the sources, the join rank may be considered.
Caching is implemented based on the cache settings specified in the Query editor.

Join order in inner joins
The result of an inner join is not dependent on the order of the sources. The Data Services Optimizer
considers join rank and uses the source with the highest join rank as the left source. The Data Services
Optimizer may choose to join tables in a different order than the order defined in the Query editor.

Viewing optimized join order
You can print a trace message to the Monitor log file which allows you to see the order in which the
Data Services Optimizer performs the joins. This information may help you identify ways to improve
performance.

To add the trace, select Optimized Data Flow from the list of traces in the Trace tab of the "Execution
Properties" dialog.

View the results of the trace in the Trace log. The message begins Join Order is:.

Join order in real-time jobs
Using a left outer join is often preferable with real-time jobs because often you want the whole message
passed on whether or not conditions a join looks for in the inner source exist.

2012-11-22133

Other Tuning Techniques

In fact, if you do not use a left outer join to order joins for a message, the software will still process the
message as if it has the highest join rank. The message source editor lacks a Join rank option because
the software automatically gives it the highest join rank.

Related Topics
• Maximizing Push-Down Operations

10.1.1.4 Inner join example

When performing inner joins, the results of the join are identical no matter what order the joins are
performed.

Because join rank is considered, for inner joins, the Data Services Optimizer may choose to join tables
in a different order than the order defined in the Query editor.

When assigning join rank, also consider the effect of cache. If you assign a high join rank to a source,
it will likely become the left (outer) source for the join. Generally, right (inner) tables are cached. When
choosing to cache a source, ensure that you have sufficient memory or pageable cache.

Consider the following information:

Number of RowsColumn (data type)Column (data type)Table

1,000,000A2 (int)A1 (int)T1

1000B2 (int)B1 (int)T2

1000C2 (int)C1 (int)T3

Suppose you wanted to create inner joins between T1, T2, and T3. Taking the number of rows in each
table into consideration, in the Query editor you might specify join rank, cache, and join pairs as shown
in the following screenshot:

2012-11-22134

Other Tuning Techniques

Although the join order is expressed as T1 INNER JOIN T2 ON T1.A1=T2.B1 INNER JOIN T3
ON T3.C2=T2.B2, the Data Services Optimizer determines the join order for inner joins. For the first
join, the Optimizer takes source with the largest join rank, T3, as the left source and the table with the
next highest join rank, T2, as the right source. The result of that inner join would then be joined with
the remaining table, T1. The optimized SQL would appear as follows:
SELECT T1.A1, T3.C2
FROM (T3 INNER JOIN T2 ON (T3.C2=T2.B2))
INNER JOIN T1 ON (T1.A1=T2.B1)

10.1.1.5 Join order with mixed joins example

Consider a case where you want to join T1 with the result of an inner join between T2 and T3.
FROM T1 LEFT OUTER JOIN (T2 INNER

JOIN T3 ON T2.B2=T3.C2)
ON T1.A1=T3.C2

.

Although you can specify mixed joins within the Query editor, you may specify the left table only for the
first join. Subsequent joins take the result of the previous join as the left source. The data flow for this
case must contain two queries. The first query will inner join T2 and T3; the second query is a left outer
join with T1 as the left source and the result of the first query as the right source.

The data flow would look as follows:

In the Query_1 transform, C2 originates in T3.

Assume the source information in the following table:

2012-11-22135

Other Tuning Techniques

CacheJoin RankNumber of
Rows

Column (data
type)

Column (data
type)Table

Yes101,000,000A2 (int)A1 (int)T1

No201000B2 (int)B1 (int)T2

No301000C2 (int)C1 (int)T3

In the first query, T3 has the higher join rank so the Data Services Optimizer would perform the inner
join as T3 INNER JOIN T2 ON T3.C2 = T2.B2 even if the outer table specified in the Query editor
is T2. In this case the cache setting for T2 is No, so the table would not be cached.

In the second query, T1 is left outer joined with the results of the first query. Join rank is not considered
because this is a left outer join. In a scenario where join rank is relevant, the maximum join rank from
the previous join is inherited. Additionally the result of the join T2 and T3 would be cached if either T2
or T3 has a cache setting of Yes.

10.1.2 Minimizing extracted data

The best way to minimize the amount of data extracted from the source systems is to retrieve only the
data that has changed since the last time you performed the extraction. This technique is called
changed-data capture.

Related Topics
• Designer Guide: Capturing Changed Data

10.1.3 Using array fetch size

SAP BusinessObjects Data Services provides an easy way to request and obtain multiple data rows
from source databases. The array fetch size feature allows you to retrieve data using fewer requests,
thereby significantly reducing traffic on your network. Tuning array fetch size can also reduce the amount
of CPU use on the Job Server computer.

The array fetch feature lowers the number of database requests by "fetching" multiple rows (an array)
of data with each request. Enter the number of rows to fetch per request in the Array fetch size option
on any source table editor or SQL transform editor. The default setting is 1000, meaning that with each
database request, The software will automatically fetch 1000 rows of data from your source database.
The maximum array fetch size that you can specify is 5000 bytes.

2012-11-22136

Other Tuning Techniques

It is recommended that you set the array fetch size based on network speed.

Note:
Higher array fetch settings will consume more processing memory proportionally to the length of the
data in each row and the number of rows in each fetch.

Regardless of the array fetch setting, sources reading columns with an Oracle LONG data type cannot
take advantage of this feature. If a selected data column is of type LONG, the array fetch size internally
defaults to 1 row per request.

10.1.3.1 To set the Array fetch size parameter

1. Use either a source table editor or an SQL transform editor.
To use a source table editor:
a. Double-click a source table in the Designer's workspace.
b. In the Performance section of the Source tab, enter a number in the Array fetch size text box.
To use an SQL transform editor:
a. Double-click an SQL transform in the Designer's workspace.
b. In the SQL transform editor, enter a number in the Array fetch size text box.
Array Fetch Size indicates the number of rows returned in a single fetch call to a source table. The
default value is 1000. This value reduces the number of round-trips to the database and can improve
performance for table reads.
The Array Fetch Size option does not support long column data types. If the SELECT list contains
a long column, the software sets the Array Fetch Size to 1 and reads one row of data at a time from
the database.

2. Click OK.

10.1.3.2 Tip

The optimal number for Array fetch size depends on the size of your table rows (the number and type
of columns involved) as well as the network round-trip time involved in the database requests and
responses. If your computing environment is very powerful, (meaning that the computers running the
Job Server, related databases, and connections are extremely fast), then try higher values for Array
fetch size and test the performance of your jobs to find the best setting.

10.2 Target-based performance options

2012-11-22137

Other Tuning Techniques

10.2.1 Loading method

You can choose to use regular loading or bulk loading. For a regular load, the Parameterized SQL
option is automatically selected when generating, parsing, and compiling the statement. By using
parameterized SQL, the software can minimize these efforts by using one handle for a set of values
instead of one handle per value.

Many databases do not support bulk loading with the following options; see the specific options for your
target database in the Reference Guide.
• Auto-correct load
• Enable Partitioning
• Number of Loaders
• Full push down to a database

The software automatically selects this optimizer process when the following conditions are met:
• The source and target in a data flow are on the same database
• The database supports the operations in the data flow

If the optimizer pushes down source or target operations, then it ignores the performance options
set for sources (Array fetch size, Caching, and Join rank) because it is not solely processing the
data flow.

• Overflow file
• Transactional loading

To improve performance for a regular load (parameterized SQL), you can select the following options
from the target table editor. Note that if you use one, you cannot use the others for the same target.
• Enable Partitioning

Parallel loading option. The number of parallel loads is determined by the number of partitions in
the target table.

• Number of Loaders

Parallel loading option. The number of parallel loads is determined by the number you enter for this
option.

Related Topics
• Push-down operations
• Table partitioning
• Bulk Loading and Reading

2012-11-22138

Other Tuning Techniques

10.2.2 Rows per commit

Rows per commit for regular loading defaults to 1000 rows. Setting the Rows per commit value
significantly affects job performance. Adjust the rows per commit value in the target table editor's
Options tab, noting the following rules:
• Do not use negative number signs and other non-numeric characters.

• If you enter nothing or 0, the text box will automatically display 1000.

• If you enter a number larger than 5000, the text box automatically displays 5000.

It is recommended that you set rows per commit between 500 and 2000 for best performance. You
might also want to calculate a value. To do this, use the following formula:

max_IO_size/row size (in bytes)

For most platforms, max_IO_size is 64K. For Solaris, max_IO_size is 1024K.

Note that even with a value greater than one set for Rows per commit, SAP BusinessObjects Data
Services will submit data one row at a time if the following conditions exist:
• You are loading into a database (this scenario does not apply to Oracle databases), and have a

column with a LONG datatype attribute.

• You are using an overflow file where the transaction failed. However, once all the rows are loaded
successfully, the commit size reverts to the number you entered. In this case, depending on how
often a load error happens, performance might be come worse than setting Rows per commit to
1.

Related Topics
• Caching sources

10.3 Job design performance options

10.3.1 Loading only changed data

2012-11-22139

Other Tuning Techniques

Identifying and loading only changed data is called changed-data capture (CDC), which includes only
incremental data that has changed since the last refresh cycle. Performance improves because with
less data to extract, transform, and load, the job typically takes less time.

Related Topics
• Designer Guide: Capturing Changed Data

10.3.2 Minimizing data type conversion

SAP BusinessObjects Data Services offers very robust and easy-to-use data type conversions via
column mappings of different data types. It is recommended that you:
• Avoid unnecessary data conversions.

• Verify that SAP BusinessObjects Data Services is performing the implicit conversions (selected
when you drag and drop columns from input to output schemas in the query transform) as expected.
This can be done by looking at the warnings generated during job validation.

10.3.3 Minimizing locale conversion

If your jobs do not require the use of different or multi-byte locales, you can increase performance by
ensuring that locales are single-byte and not mismatched.

10.3.4 Precision in operations

SAP BusinessObjects Data Services supports the following precision ranges: 0-28, 29-38, 39-67, 68-96.
Note that as you decrease precision, performance increases for arithmetic operations and comparison
operations. In addition, when processing an arithmetic or boolean operation that includes decimals in
different precision ranges, the software converts all to the highest precision range value because it
cannot process more than one decimal data type precision range for a single operation. For example,
if the software must perform an arithmetic operation for decimals with precision 28 and 38, it converts
both to precision 38 before completing the operation.

2012-11-22140

Other Tuning Techniques

Index
A

aggregations, pushing to database 34
al_engine process 19
al_jobserver process 19
analyzing trace log files 24
array fetch size 136
auto correct load

enabling push down 41

B

bulk loading
DB2 89
DB2, using import utility 95
Informix 97
Oracle 102
Oracle, conventional-path load 102
Oracle, direct-path load 102
Sybase 107
Teradata 108
Teradata, Load Utilities 117
Teradata, Parallel Transporter 114
using 125
vs. regular loading 138

C

caching
joins 48
Table_Comparison transform 51
tables 47
using a lookup function 50

caching data 30, 47
caching lookups vs. setting source

table as outer join 50
changed-data capture, performance,

using for 136
conventional-path loading in Oracle

102

D

data
capturing changes 139

Data Services, optimizing data
transformations 33

data transformations
optimize by caching 22, 30, 47
optimizing 33

data transformations (continued)
pushing to source database 37

data type conversion 140
database links

and datastores 42
defined 42
example data flow 43
importing 42
software support 42
tuning performance 45

datastores
adding database link support 42
and database links 42
persistent cache 52

DB2, bulk loading 89
degree of parallelism, enabled for

functions 66
degree of parallelism, for data flows 62

E

extracting data
caching 47
minimizing 136

F

filtering, pushing to database 34
functions, pushing to database 34

I

import utility for DB2 bulk loading 95
Informix, bulk loading 97
IPC communications

between data flows 86
between sub data flows 87

J

join order
real-time jobs 133

join ordering 133
join rank 130
joins, caching 48
joins, pushing to database 34

L

linked datastores
creating 42
example data flow 43
tuning performance 45

Loading 138
logs

performance monitor 54
lookup function, caching 50

M

Microsoft SQL Server
bulk loading 98

minimize data extracted 136
monitor log files, performance 25

O

operational dashboards 26
optimizing data transformations 33
optimizing join order 133
Oracle

bulk loading 102
bulk loading, conventional-path

load 102
bulk loading, direct-path loading

102
parallel loading 104

ordering, pushing to database 34

P

parallel execution 57, 73
degree of parallelism 62
Degree Of Parallelism 62, 78
degree of parallelism, enabled for

functions 66
file multi-threading 70
for different data flows and work

flows 57
partitioned tables 58
partitioned tables, creating 59
partitioned tables, enabling 61
using table partitioning and DOP

68
within a single data flow 58, 73

parallel loading in Oracle 104

2012-11-22141

peer-to-peer communications
between data flows 86
between sub data flows 87

performance
changed-data capture and 139
data transformations and 37
improving, DS environment 13, 17
improving, with bulk loading 125
improving, with parallel execution

57, 73
measuring, with DI options 20
measuring, with DS options 27
tuning, with DS job design options

30, 129
tuning, with DS source options 30,

129
tuning, with DS target options 30,

129
performance monitor log 54
Performance Monitor, reading

execution statistics 26
persistent cache datastore 52
projection, pushing to database 34

pushing down operations to a
database
join example 37
joins, pushing to database 37

pushing operations to database
example 35
logic 33
overview 33

R

rows
duplicate, avoiding loading 41

rows per commit 139
rows, retrieving multiple 21, 136

S

server groups
grid computing 84

sizing tables 47
sources

retrieving multiple rows 21, 136
SQL

pushing to database 33

Sybase, bulk loading 107

T

Table_Comparison transform,
performance, improving 51

tables
caching 47
retrieving multiple rows 21, 136
sizing 47

Teradata
bulk loading 108
bulk loading using Load Utilities

117
bulk loading using Parallel

Transporter 114
load utilities 117, 119, 121, 125

throughput, improving 30
trace log files, analyzing 24
tuning techniques

array fetch size 136
caching data 30, 47
minimize data extracted 136
minimize data type conversion 140
rows per commit 139

2012-11-22142

Index

	Performance Optimization Guide
	Contents
	Welcome to SAP BusinessObjects Data Services
	Welcome
	Documentation set for SAP BusinessObjects Data Services
	Accessing documentation
	Accessing documentation on Windows
	Accessing documentation on UNIX
	Accessing documentation from the Web

	SAP BusinessObjects information resources

	Environment Test Strategy
	The source OS and database server
	Operating system
	Database

	The target OS and database server
	Operating system
	Database

	The network
	Job Server OS and job options
	Operating system
	Jobs
	Setting Monitor sample rate
	Collecting statistics for self-tuning
	To take advantage of this self-tuning feature

	Measuring Performance
	Data Services processes and threads
	Processes
	Threads

	Measuring performance of jobs
	Checking system utilization
	CPU utilization
	Memory

	Analyzing log files for task duration
	Reading the Monitor Log for execution statistics
	Reading the Performance Monitor for execution statistics
	To view the Performance Monitor

	Reading Operational Dashboards for execution statistics
	To compare execution times for the same job over time

	Tuning Overview
	Strategies to execute jobs
	Maximizing push-down operations to the database server
	Improving throughput
	Using advanced tuning options

	Maximizing Push-Down Operations
	Push-down operations
	Full push-down operations
	Partial push-down operations
	Operations that cannot be pushed down

	Push-down examples
	Collapsing transforms to push down operations example
	Full push down from the source to the target example
	Full push down for auto correct load to the target example
	Partial push down to the source example
	Push-down of SQL join example

	To view SQL
	Data_Transfer transform for push-down operations
	Push down an operation after a blocking operation example
	Using Data_Transfer tables to speed up auto correct loads example

	Database link support for push-down operations across datastores
	Software support
	To take advantage of linked datastores

	Example of push-down with linked datastores
	Generated SQL statements
	Tuning performance at the data flow or Job Server level
	For a data flow
	For a Job Server

	Using Caches
	Caching data
	Caching sources
	Caching joins
	Changing cache type for a data flow
	Caching lookups
	Using a Lookup function in a query
	Using a source table and setting it as the outer join

	Caching table comparisons
	Specifying a pageable cache directory

	Using persistent cache
	Using persistent cache tables as sources

	Monitoring and tuning caches
	Using statistics for cache self-tuning
	To automatically choose the cache type

	To monitor and tune in-memory and pageable caches

	Using Parallel Execution
	Parallel data flows and work flows
	Parallel execution in data flows
	Table partitioning
	Data flow with source partitions only
	Data flow with target partitions only
	Dataflow with source and target partitions
	Viewing, creating, and enabling table partitions
	To view partition information
	To create or edit table partition information
	To enable partition settings in a source or target table
	Tip

	Degree of parallelism
	Degree of parallelism and transforms
	To set the Degree of Parallelism for a data flow
	Degree of parallelism and joins
	Degree of parallelism and functions
	To enable stored procedures to run in parallel
	To enable custom functions to run in parallel

	Tips

	Combining table partitioning and a degree of parallelism
	Two source partitions and a DOP of three
	Two source partitions and a DOP of two
	Two source partitions, DOP of three, two target partitions
	Two source partitions, DOP of two, and two target partitions

	File multi-threading
	Flat file sources
	Flat file targets
	Tuning performance
	Tips

	Distributing Data Flow Execution
	Splitting a data flow into sub data flows
	Run as a separate process option
	Examples of multiple processes for a data flow
	Scenario 1: Run multiple sub data flows with DOP set to 1
	Scenario 2: Run multiple sub data flows with DOP greater than 1

	Data_Transfer transform
	Examples of multiple processes with Data_Transfer
	Scenario 1: Sub data flow to push down join of file and table sources
	To define sub data flows to push down a join of a file and table

	Scenario 2: Sub data flow to push down memory-intensive operations
	To define sub data flows to push down another operation

	Using grid computing to distribute data flow execution
	Server Group
	Distribution levels for data flow execution
	Job level
	Data flow level
	Sub data flow level

	Bulk Loading and Reading
	Bulk loading in DB2 Universal Database
	When to use each DB2 bulk-loading method
	Using the DB2 CLI load method
	To configure your system to use the CLI load method
	To use the CLI load method in a job

	Using the DB2 bulk load utility
	To configure your system to use the load utility
	To use the load utility in a job

	Using the import utility

	Bulk loading in HP Neoview
	How Data Services and HP Neoview use the file options to load
	Using the UPSERT bulk operation

	Bulk loading in Informix
	To set Informix server variables

	Bulk loading in Microsoft SQL Server
	To use the SQL Server ODBC bulk copy API
	Network packet size option
	Maximum rejects option

	Bulk loading in Netezza
	Netezza bulk-loading process
	Options overview
	Configuring bulk loading for Netezza
	Netezza log files

	Bulk loading in Oracle
	Bulk-loading methods
	Bulk-loading modes
	Bulk-loading parallel-execution options
	Bulk-loading scenarios
	Using bulk-loading options
	Direct-path loads using Number of Loaders and File method
	Direct-path loads using partitioned tables and API method

	Bulk loading in SAP HANA
	Bulk loading in Sybase ASE
	Bulk loading in Sybase IQ
	Configuring bulk loading for Sybase IQ
	Sybase IQ log files

	Bulk loading and reading in Teradata
	Bulk loader file options
	Data file
	Generic named pipe
	Named pipes access module

	When to use each Teradata bulk-loading method
	Parallel Transporter method
	Source performance tuning
	Special considerations

	Target performance tuning
	To configure the bulk loader for parallel processing

	Teradata standalone utilities
	FastLoad
	MultiLoad
	TPump
	Load Utility

	Using the UPSERT bulk-loading operation

	Bulk loading using DataDirect's Wire Protocol SQL Server ODBC driver
	Enabling the DataDirect bulk load feature in Windows
	Enabling the DataDirect bulk load feature in UNIX

	Other Tuning Techniques
	Source-based performance options
	Join ordering
	Join rank settings
	Join rank tips
	About join ordering
	Inner join example
	Join order with mixed joins example

	Minimizing extracted data
	Using array fetch size
	To set the Array fetch size parameter
	Tip

	Target-based performance options
	Loading method
	Rows per commit

	Job design performance options
	Loading only changed data
	Minimizing data type conversion
	Minimizing locale conversion
	Precision in operations

	Index

